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Abstract
The blood flow with heat transportation has prominent clinical importance during the levels where the blood flow needs 
to be checked (surgery) and the heat transportation rate must be controlled (therapy). This work presents an analysis of the 
melting heat transport of blood, which consists of iron nanoparticles along free convection with cross-model and solution 
of the partial differential equation (PDEs) are emerged by the mathematical model. Being the importance of iron oxide 
nanoparticles in applications of the biomedical field due to their intrinsic properties such as colloidal stability, surface engi-
neering capability and low toxicity, this study has been launched. Furthermore, PDEs of the problem are converted into a 
set of nonlinear ordinary differential equations (ODEs) by proper transformations. The solution of this system of ODEs is 
calculated through RK 4 method and Keller–Box scheme. Some leading points and numerical results of this study of both 
types of presence and absence of meting effects are tabulated.

Keywords  Cross-nanofluid model · Melting and convective heat transport of blood · BVP4C · Keller–Box method
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T2(K)	� Temperature of ambient fluid
�nf

(
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)
	� Density of nanofluid

�nf

(
Ns
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)
	� Effective viscosity of nanofluid

g
(
m/s2

)
	� Gravitational acceleration

�	� Visibility of concentration
kf(W/Km)	� Thermal conductivity of fluid
ks(W/Km)	� Thermal conductivity of solid
a, c	� Constant
n	� Cross-fluid index

1  Introduction

The term convective heat transport is simply recognized as 
convection used in the phenomenon of heat transportation 
through the random motion of nanofluids particles. Convec-
tion plays an important role in heat transportation in liquids 
as well as gasses. Convective heat transport is a transfer of 
heat between stirring liquid and compact surface at dissimilar 
temperatures. Such transport can be judged by the growing 
thermal conductivity of the fluid. The researchers investigated 
the thermal conductivity of regular liquids through the suspen-
sion of greater or micro-sized dense particles in the liquid. The 
theory of heat transference of liquid related dense particles was 
presented by Maxwell [1] and some recent study based on the 
convection of heat transport is provided in the references [2, 3].

Mass convection under the influence of chemical reac-
tion–diffusion for the description of cell polarity is described 
by Latos et al. [4]. The impression of radiative and convec-
tive heat transference with convective thermocapillary for a 
high Prandtl number considered by Yano and Nishino [5]. 
Steady solutions of compressible fluid with high density, 
chemical reaction and transport limit of singularly perturbed 
convection–diffusion are studied by [6, 7]. The leading factor 
of heat transference on the fluid bridge with a free surface 
for mixed cases. When the instructions of thermocapillary 
and vapor flow coincide, the radiative factor can be sur-
passed even under circumstances via durable gas flow.

The nanofluid is a fluid that contains the smallest structure 
and size of particles having their nanometer sized. These fluids 
are organized on the base of the fluid as a suspension. Nano-
particles are usually made of oxides, metals, carbon nanotubes 
and carbides. The small dust and fog are examples of such flow, 
which have been extensively utilized in warmth exchangers, solar 
energy structures, electrical chips, and automobile heaters. In the 
solar energy structure, nano liquids have massively probable that 
have been by Wahab et al. [8]. Some real confines and massive 
tasks of nano liquids were considered by Shah et al. [9]. The 
results of the thermic recital of the photovoltaic thermal mass uti-
lizing CuO-water along a nano liquid were inspected by Michael 
et al. [10]. It is perceived that the thermic proficiency grows up to 
45.76% of CuO-water nano liquid with 0.05% capacity fraction 

along with the water at a mass drift rate is 0.01 kg/s. The solar 
thermic conversion proficiency augmented with intensification in 
nanoparticle absorption of mixed walled carbon nanotubes was 
considered by Chen et al. [11]. Yurddas [12] debated mathemati-
cally the thermal presentations of nanofluids in the exiled tube 
solar. Enhancement of the photovoltaic thermal structures was 
derived by Abbas et al. [10–13]. It is observed that the volume 
segment of nanoparticle absorption less than 5% was apposite 
to evade the clustering procedure of the nanoparticles. A new 
way to calm absorbed photovoltaic structures by utilizing an 
extensive microchannel heat sink along nanofluids was provided 
by Radwan et al. [14]. Mercan and Yurddas [15] debated both 
mathematically and experimentally the consequences of several 
factors based on the heat transfer of expatriate tube.

A boundary layer in the fluid flow is referred to a thin layer of a 
flowing material having its contact with a surface, like the wing of 
an airplane and the surface inside of a pipe. Such boundary layer 
flows show the laminar category generally. The boundary layer 
flow through the deformable sheets is studied by many researchers 
using several industrial applications, namely, smooth extrusion of 
flexible sheets, boundary layer with fluid film, reduces progres-
sion of the copper plate and polymer trades. Also, such flows have 
a promising tender in the extrusion of polymer sheets using the 
portrayal of flexible films. The production of the mentioned sheet 
and afterward strained to accomplish in the anticipated width. The 
conventional result for the boundary layer flow of the viscid liquid 
thru deformable sheet, stirring along velocity fluctuating linearly 
discussed by Crane [16]. Mukhopadhyay [17] explored proper-
ties of MHD slip on boundary layer flow through exponentially 
extending sheet with puff and thermic radiation. The thermic 
radiation impacts on micropolar fluid and heat transfer through 
the permeable deformable sheet were inspected by Bhattacha-
ryya et al. [18]. Results for 2-D laminar electrically conducting 
flow along continuously extending sheet dormant couplings strain 
liquid was scrutinized by Turkyilmazoglu [19]. The outcomes of 
absorption to the stagnation point with the convective condition 
have been considered by Alsaedi et al. [20].

A cross-fluid lies in that category of generalized Newto-
nian fluid where variable viscosity is taken at a shear rate. 
This fluid is based on the classification of the rheology. 
The existing inquiries depict the structure of non-Newto-
nian and Newtonian axis symmetric liquid flow. Investiga-
tional inquiry of the cross-liquid problem was performed 
by Escudier et al. [21] via suitable non-Newtonian fluid 
with the cross-equation, which is presented by fluid-flow 
and Xanthan gum data. In the power-law structure, we have 
restricted viscosity on the shear rate turns out to be zero 
with cross-fluid. The cross-fluid problem is useful in the 
combination of various polymeric solutions, namely blood 
and Xanthan gum, which was explored by Barnes et al. [22]. 
Xie et al. [23] used the WC-MPS technique to scrutinize the 
flow of free surface non-Newtonian fluids and determined 
four borders of the cross-fluid problem. The heat transfer of 
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cross-fluid and boundary layer flow was done by Khan et al. 
[24]. Cross-fluid model contains time continuity, which is 
utilized in numerous engineering problems provided in ref-
erences [25–28].

The basic aim of this study is to investigate the melting 
heat transport of blood with a cross-fluid model and solution 
of PDEs by the mentioned model. These PDEs are passed 
through the mechanism of similarity variable and made the 
conversion into nonlinear differential equation ODEs. More-
over, the shooting technique rescued and made the system 
of nonlinear ODEs of the first order. For comparison and 
numeric solution, bvp4c method built in Matlab program 
and Keller–Box methodology is adopted.

The rest of the paper sections are provided on the physical 
model, validity of study, analysis and solver a numeric meth-
odology, Keller–Box technique, discussion of the numerical 
results and conclusion.

2 � Origination of PDEs of cross‑fluid model

The vector form of equation of continuity and momentum 
is given as:

(1)divV = 0,

Velocity profile

Using the requirements of (1) and (2), we have

as v = �0

�
 utilizing in 10, we get

(2)�
dv

dt
= div� + b,

(3)� = −pI + �A1,

(4)� = �∞ +
(
�0 − �∞

)[ 1

1 + (�r⋅)n

]
,

(5)� = �0

[
1

1 + (�r⋅)n

]
,

(6)A1 = gradV + (gradV)T, 𝛾̇ =

√
1

2
tr(A1)

2,

(7)V =
[
u(x, y), v(x, y), 0

]
,

(8)𝛾̇ =

[
4
(
𝜕u

𝜕x

)2

+

(
𝜕u

𝜕y
+

𝜕v

𝜕x

)2
]1∕2

,

(9)
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�x
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�v
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Equations (11) and (12) are further scrutinized with the 
concepts of boundary layer along with the mass and momen-
tum form is given as:

(12)

�
u
�u

�x
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�y

�
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.

(13)
�u

�x
+

�v

�y
= 0,

Pressure along y-axis has no contribution so Eq. (12) disap-
pears due to zero pressure.

2.1 � Origination of PDEs for energy equation

The vector form of energy equation is given as:

(14)

u
�u

�x
+ v

�u

�y
= −

1

�

�p

�x
+ �

�2u

�y2

[
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(
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)n]−1

+ �
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�
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[
1 + �n

(
�u
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,

(15)

u
�u

�x
+ v

�u
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+
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�t
= �

[((
Γ
�u

�y

)n

+ 1

)−1
]
�2u

�y2
,

−

(
�u

�y

)n
�2u

�y2

[
1 +

(
Γ
�u

�y

)n]−2

�Γnn + g�nf
(
T
1
− T

2

)

(16)�cp
dT

dt
= � ⋅ L − div(q),

(17)q = (−k∇T), L = ∇V .

Table 1   Fluid properties along with its units and blood ratio

Properties of fluid Unit Iron oxide 
(Fe3O4)

Blood

Density kg/m3 5180.00 1050.00
Thermal conductivity W/K m 9.70 0.520
(Coefficient of thermal expansion) K−1 1.3 × 10–5 0.18 × 10–5

(Heat capacitance) J/K 670 3617

Fig. 1   Geometry of flow

3 � Geometry related physical model

Incompressible and 2-D flow with convection boundary 
layer conditions of cross-nanofluid (blood), which contains 
nanoparticles of iron oxides (Fe3O4) is flowing along a ver-
tical surface. Table 1 describes the thermophysical proper-
ties, which are related to the nanofluids (blood). The fluid 
(blood) is flowing along the x‐axis, which is admitted along 
the vertical surface and the y‐axis is placed orthogonal to 
the x-axis, which is clear in the figure of geometry 1. The 
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flow is bounded within the regime of upper the y-axis that 
is in y > 0. Surface temperature is Tm, and T2 (constant tem-
perature) of the ambient medium. It is noted here that Tm is 
lower than the T2 (Fig. 1).

Being processing the approximations of boundary layer, 
the governing community of equations for a cross-nanofluid 
for 2-D is mentioned below [29]:

For above-mentioned mathematical system, BCs are

The mentioned Eq. (4) is known for melting heat trans-
port. Such transportation imparts that heat of melting sur-
face + Heat required for raising solid temperature T0 to its 
melting temperature Tm = Heat of melting. Below given 
transformation satisfies the equation of the continuity, so by 
this transformation it is confirmed that flow is possible and 
now using Eqs. (19) and (20), we get

(18)
�[u]

�x
+

�[v]

�y
= 0,

(19)

u
�u

�x
+ v

�u

�y
+

�u
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Γ
�u
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]
�2u

�y2

−
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�u
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Γ
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,
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�y2
.

(21)

u = uw(x, t) where uw(x, t) =
ax

1 − ct
, T1 = Tm, aty = o,

(22)

for y → ∞, (−)

�
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�T1

�y

�

y=0

= ⟨�∗ − �
T − Tmo

�
cs⟩v(x, o)�f. Fulfilling all requirements for Eqs. (2) and (3), the highly 

nonlinear differential equations take the form as:

(23)

|||||||||||||||||
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�fc
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� = y

√(
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)
,
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v = −
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�x
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�(�) =
[
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]
,

|||||||||||||||||
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||||||||||||||
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[

1

(1−�)−5∕2

]
�f,
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(�Cp)nf
=

1

(1−�)−1

(
�Cp

)
f
+ �

(
�Cp

)
s

�nf = (1 − �)�f + �(�)s.
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=
[
(2ks+kf)−2(kf−2ks)�

(2ks+kf)+(kf−2ks)�

]

�nf = (1 − �)�f + ��s

||||||||||||||

.

(25)

A
[
f � +

�

2
f ��
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(
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=

[{
(1 − �) + �
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�f
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1 − (n − 1)

(
wef ��

)n)]
f ���

+

{
(1 − �) + �

�s

�f

}
�� − f �2 − ff ,��

Table 2   Comparison of the literature work for (− θ′(0)) by fixing 
A = ϕ = We = λ = 0

Pr Ref. [30] Ref. [31] Ref. [32] Present
bvp4c

Present
Keller–Box

0.72 1.0885 1.0885 1.0823 1.08240245 1.08240243
1.00 1.3333 1.3333 1.3337 1.33368769 1.33368762

10.00 4.7969 4.7968 4.7967 4.79681264 4.7968165

Fig. 2   Graphical validity of the study
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(26)

��� − Pr
kf

knf

{
(1 − �) + �

(
�Cp

)
s(

�Cp

)
f

}

{
A

(
���

2
+ 2�

)
− ��f + 2�f �

}
= 0.

Important physical quantities are

(27)

|||||||||

f � = 1,

�� = 1, at � = 0

f � → 0, �� → 0, at � = ∞

M��(0) + Pr f (0) = 0

|||||||||
.

Fig. 3   Flowchart of the through programming scheme
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Similarity variables becomes as:

3.1 � Validness of study

Table 2 encourages to move forward to get advance result 
and discussion, because this Table 2 approves the current 
work due to agreement of these value of −��

(0) with existing 
literature (Fig. 2).

4 � Numerical procedure for the solution 
and programing methodology

This section provides a brief explanation to solve the ODEs 
given in (8) and (9) along with the boundary condition. 
Due to non-availability of the solutions in the literature, the 
shooting technique is applied that works to convert the BVPs 
into IVPs along with the Runge–Kutta Fehlberg 45th‐order 
method. The procedure steps of the shooting methodology 
[33–43] are given as (Fig. 3):

BCs are

(28)Cfx =
2�w�nf

�fu
2
w

(
�u

�y

)

y=0

,

(29)Nux =
−xknf

(
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)−1
x
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�T1

�y

||||y=0,
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(
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1

(1 − �)2.5
2f ��(0)[

1 +
(
We1f

��(0)
)n] ,

(31)Nux

√(
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)−1
=

(
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)(
−��(0)

)
.

(32)

||||||||||||||||||||||||||||

f = E1,

f � = E2, f
�� = E3,

f ��� = E
�

3
, � = E4, �

� = E5,

��� = E6,

E�
3
=

A
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E2+

�

2
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−
{
(1 − �) + �

�s

�f

}
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2
+ E × E3
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kf

knf
− Ω3

{
A
(
2E4 +

�E5

2

)
+ 2E4E2 − E5E1

}

whereΩ1 =
[{

(1 − �) + �
�s

�f

}{
(1 − �)2.5

}]−1

Ω2 =
[(
1 − (n − 1)

(
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)n)(
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(
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Ω3 =

{
(1 − �) + �

(�Cp)s
(�Cp)f

}

||||||||||||||||||||||||||||

.

5 � Keller–Box method

Fast convergence method-based Keller–Box technique 
to solve the differential Eqs.  (25)–(27). This method is 
explained in four approaches.

Approach 1 The higher order differential systems (25–26) 
are needed to process for converting in system of first-order 
differential equations. To get this purpose, following substi-
tutions are made:

Using Eqs. (25–26)

The BCs take the form as:

Approach 2 Formulation of grid points are needed to be 
set and described as:

The central difference approximations method is utilized 
considering arbitrary points.

(33)

E2 = 1, E4 = 1, at � = 0, E2 → 0,

E5 → 0, at � = ∞, M E5(0) + Pr E(0) = 0.
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(36)

L
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{
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)
f
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2
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|||||||||

H = 1,

L = 1, at� = 0

H → 0, L → 0, at� = ∞

ML(0) + Pr f (0) = 0

|||||||||
.

(38)�0 = 0, �j = �j−1 + hj, j = 1, 2, 3,… , J, �J = �∞.

(39)

fj − fj−1

hj
= H

j−
1

2

,
�j − �j−1

hj
= L

j−
1

2

, and f
j−

1

2

=
fj + fj−1

2
,
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Approach 3 The obtained system is nonlinear, so we can-
not move further without linearizing the system. Therefore, 
(j + 1) th iteration we write this in way of fj+1 = fj + �fj and 
continuing the process for all involved independent vari-
ables. Ignoring the second-order well as higher order terms 
for �fj and continuing the process, as result tridiagonal sys-
tem of linear equations goes in matrix form.

In which

Now, we suppose that

where

Here, unit matrix is [I], the matrices [ai] and [Γi] have 
5 × 5 order and process of calculating its element as

(40)
A
[
H

j−
1

2

+
�

2

(
U

j−
1

2

)](
1 +

(
we

(
H

j−
1

2

))n)2

=

[{
(1 − �) + �

�s

�f

}{
(1 − �)2.5

}]−1
×

[(
1 − (n − 1)

(
we

(
H

j−
1

2

))n)][Hj − Hj−1

hj

]
+

{
(1 − �) + �

�s

�f

}
�l

j−
1

2

−
(
H

j−
1

2

)2

− H
j−

1

2

f
j−

1

2

,

(41)
[
Lj − Lj−1

hj

]
− Pr

kf

knf

{
(1 − �) + �

(
�Cp

)
s(

�Cp

)
f

}{
A

(
�V

j−
1

2

2
+ 2�

j−
1

2

)
− Lf + 2�

j−
1

2

H
j−

1

2

}
= 0.

(42)A� = r∗.

(43)A =
�2

�x2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
A1

� �
C1

�
− −�

B2

� �
A2

� �
C2

�

⋱ ⋱

⋱ ⋱

⋱

⋱

�
Bj−1

� �
Cj−1

� �
Cj−1

�
�
Bj

� �
Aj

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
�1
�

�
�2
�

⋱

⋱

⋱

⋱�
�j−1

�
�
�j
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, r∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
r1
�

�
r2
�

⋱

⋱

⋱

⋱�
rj−1

�
�
rj
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(44)A = L∗U,

(45)

L∗ =

⎡⎢⎢⎢⎢⎢⎣

�
a1
�

�
b2
� �

a2
�

⋱ ⋱

⋱ ⋱�
bj
� �

aj
�

⎤⎥⎥⎥⎥⎥⎦

, U =

⎡⎢⎢⎢⎢⎢⎢⎣

[I]
�
Γ1

�
[I]

�
Γ1

�
⋱ ⋱

⋱ ⋱

[I]
�
ΓJ−1

�
[I]

⎤⎥⎥⎥⎥⎥⎥⎦

,

(46)
[
ai] = [Ai

]
,

(47)
[
A1

][
Γ1

]
=
[
C1

]

Assume that,

and

Here

where 
[
Pj

]
 inculpates column matrices having 5 × 5 order, 

and computation process is given below:

(48)
[
aj
]
=
[
Aj

]
−
[
Bj

][
Γj−1

]
, j = 1, 2, 3,… , J,

(49)
[
ai
][
Γ1

]
=
[
Cj

]
, j = 1, 2, 3,… , J

(50)L∗U� = r∗.

(51)U� = P,

(52)L∗P = r∗.

(53)P =

⎡
⎢⎢⎢⎢⎢⎣

�
P1

�
�
P2

�
�
P3

�
�
P4

�
�
P5

�

⎤⎥⎥⎥⎥⎥⎦

,

(54)
[
a1
][
Pj

]
=
[
r1
]
,

(55)
[
aj
][
Pj

]
=
[
rj
]
−
[
Bj

][
Pj−1

]
.
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To get the results of P, � elements are calculated by the 
below relation as:

(56)
[
�j
]
=
[
Zj
]
,

(57)
[
�j
]
=
[
Zj
]
−
[
Γj

][
�j+1

]
.

Approach 4 After reaching this stage, final form of system 
of linear equations are passed through block technique. Con-
tinuous iterations are going on until achieving the absolute 
difference which is kept less than 10−6 in two consecutive 
iterations.

Fig. 4   Flowchart of the complexity analysis
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6 � Results

The present section describes the results of the blood flow 
carrying of nanoparticles of iron oxide. The numerical 
outcomes are placed in tabular form and sketched through 
geometrical data. Different parameters and their impact 
on velocity and temperature of nanofluid (blood) is elabo-
rated through figures and tables. Physical quantities are 
also there with a reasonable explanation. The impact of 
different parameters is shown for shear thinning/thickening 

n = 0.5 and n = 1.5, respectively. Present assumed problem 
goes into the category of the steady case when we sub-
stitute A = 0. The numerical attitude of quantities Skin 
friction and Nusselt number is explained by Table 4 with 
variation of parameters � , � , � and A . Parameter Pr puts 
the direct effect of motion and temperature of the fluid, and 
this fact is shown geometrically through sketching 14 (a, 
c, d, e) (Fig. 4).

Fig. 5   f (�) for A (n > 1 ^ n < 1)

Fig. 6   f (�) with � (n > 1 ^ n < 1)

Fig. 7   f (�) with M (n > 1 ^ n < 1)

Fig. 8   f (�) with n
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The influence of the parameters through the geometry 
of the problem is illustrated in Figs. 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15, 16. The velocity profile is derived for both 
cases n < 1 keeping fixed that is n = 0.5 (shear thinning) and 
n > 1 keeping fixed n = 1.5 (thickening case). Highlighting 
the impact of A on f ′(η) of nanofluid (blood) is plotted in 
Fig. 5. An increase in A responses decrement in f′(η). As A is 
time related parameter so the time is consuming due to this 
boundary layer thickness decreases and as a result velocity 
downs for both cases (n > 1 ^ n < 1). Figure 6 discusses the 

effect of λ on f ′(η) and it presents velocity and momentum 
boundary layer thickness is growing because of step-up in λ 
in (n > 1 ^ n < 1). Physical point of view, growth in λ leads 
the enhancement of convection currents. As melting param-
eter grows as a result velocity gets up for (n > 1 ^ n < 1) due 
to melting of fluid this fact is seen in Fig. 7. Figure 8 depicts 
that cross-index responsible for higher velocity. Figure 9 
provides that the gradual increment in � and the velocity of 
the nanofluid (blood) behaves alike, but opposite behavior 
is found in Fig. 10 for Prandtl number in both cases (n > 1 
^ n < 1). Increment in Prandtl number causes to lose the 
temperature and motion of nanoparticle that’s why velocity 
gets down. As we is related with relaxation time due to this 
increment in it causes to slow velocity this fact is shown in 
Fig. 8.           

Fig. 9   f (𝜂) with 𝜙(n > 1n < 1)

Fig. 10   f (𝜂) with Pr (n > 1n < 1)

Fig. 11   f (�)withWe

Fig. 12    �(�)with A
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The effects of A causes to increase the thermal boundary 
layer thickness due to this temperature gets high by increas-
ing A that is shown in Fig. 12. Effects of surface convec-
tion parameter on temperature of nano-cross-fluid (blood) 
in the boundary layer region is shown in Fig. 13. Observa-
tion is made that temperature (nanofluid blood) decreases 
on increasing this said parameter, because boundary layer 
region and is maximum at the surface of the plat thus, the 
thermal boundary layer thickness decreases with the increase 
convection parameter. It is found that when M takes it larger 
value, the temperature of ambient fluid loses, because the 
motion of the fluid reduces, due to this temperature of nano-
fluid (blood) loses that is in Fig. 14. Interpretation-related 

Fig. 13    �(�)with �

Fig. 14    �(�)withM

Fig. 15   �(�) with�

Fig. 16   �(�)with Pr

Table 3   Tabular representation of results and discussion

Parameters Values Velocity profile Energy profile
Findings Findings

� 0.01, 0.50,… Increment Increment
A 1.0, 1.3,… Decrement Decrement
We 0.0, 0.3,… Decrement Nil
n 0.3, 0.7,… Increment Nil
Pr 0.5, 1.0,… Decrement Decrement
M 0.1, 0.5,… Decrement Decrement
� 0.3, 0.9,… Increment Decrement
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solid volume fraction of nanofluid (blood) parameter ϕ on θ 
(η) is made through Fig. 15 which illuminates that develop-
ing the ϕ temperature downs. Physically, this implies that 
when solid friction of nanoparticle become high then liquid 
friction down so, due to less friction in blood temperature 
loses. Pr has affect which reduces the velocity profile, which 
implies that when nanofluid velocity becomes lower, so it 
results the lower diffusion so temperature downs with grow-
ing Pr and this fact is shown in Fig. 16. Easiest way to under-
stand of debate on results is elaborated through Table 3.

7 � Conclusions

The main causes to present this numerical work through the 
melting phenomenon of heat transport with the boundary 
layer flow for cross-nanofluid in the influence of the convec-
tion way of heat transport. Characteristic of flow and tem-
perature profile of cross-fluid (blood) is presented in detail 
in tabular as well as geometrical interpretation. Few key 
findings of the current research study are presented below 
as (Fig. 17) (Table 4):
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Fig. 17   a–d Geometrical behavior of physical quantities
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•	 Velocity magnitude is larger in cross-fluid with gradual 
increment in n.

•	 Variation in the Prandtl number it responses lower the 
velocity and temperature of the blood.

•	 ( f � (�) ) and ( �(�) ) of nanofluid (blood) decreases by 
increasing the melting parameter M, because when 
melting occurs temperature loses.

•	 The stickiness of the nanofluid is being enhanced for 
uplifting the numeral values of �

•	 Convection currents enhance for rise in λ and due to this 
increment in velocity and reverse attitude is found for 
temperature.
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