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Abstract: In this study, an efficient fourth-order conservative explicit numerical scheme using method of lines is

developed to simulate different scenarios of soliton interactions and reflections for a (2 ? 1)-dimensional coupled non-

linear Schrödinger (CNLS) system. The fourth-order Runge–Kutta technique is applied as a time integrator to the resulting

ordinary differential system. Both integrable and nonintegrable cases of the CNLS system are considered. A condition for

the scheme to be stable is deduced with the aid of von Neumann stability analysis. Several numerical experiments have

been carried out to exhibit the reliability of the scheme in capturing and understanding the interesting phenomenon of

elastic and inelastic soliton collisions/reflections related to many nonlinear evolution equations. The ability of the

scheme to preserve the conserved invariants in long terms confirms its accuracy and stability. New results associated with

interactions and reflections of soliton waves are obtained.
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1. Introduction

Various forms of nonlinear Schrödinger equations are used

in several applications, such as Bose–Einstein condensates

of atoms, plasma physics, systems of fiber communica-

tions, nonlinear optics, quantum mechanics and fluid

dynamics [1–9]. Concerning the field of communication in

fiber systems, such systems have been exposed to describe

spread of waves in nonlinear optical fibers and in the

systems of wavelength-division-multiplexed [2, 10]. Also,

the beam propagation in crystals is modeled using this type

of equations. In [5], the propagation of interaction solitons

is imaged at real time and discovered using the atoms

condensates of Bose–Einstein with awesome collisions by

a quasi-one-dimensional waveguide. Also, the spread of

rogue waves in open water is described by the nonlinear

Schrödinger equation [11]. Solitary waves produced by the

coupled nonlinear Schrödinger (CNLS) equations are often

termed by vector solitons as they naturally have two

components. In the last recent years, the (1 ? 1)-dimen-

sional CNLS system has been numerically examined

intensively [12–14]. It is proven that the vector soliton can

pass through each other after the collision and can be

bounced off or trapped each other depending on the colli-

sion type. But there is a lack of investigations that have

numerically examined the soliton collisions/reflections for

(2 ? 1)-dimensional CNLS systems [15–17]. From the

previous discussion, the study of the soliton interactions

(collisions/reflections) for (2 ? 1)-dimensional CNLS

systems is a significant issue.

In this study, we consider a (2 ? 1)-dimensional system

of coupled nonlinear Schrödinger equation in a general

form [16]:
*Corresponding author, E-mail: mm.mousa@mu.edu.sa; mawx@-

cas.usf.edu

Indian J Phys

https://doi.org/10.1007/s12648-021-02065-6

� 2021 IACS

http://orcid.org/0000-0001-8464-4580
http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-021-02065-6&amp;domain=pdf
https://doi.org/10.1007/s12648-021-02065-6


iUt þ c Uxx þ Uyy

� �
þ a Uj j2þb Vj j2

� �
U ¼ 0;

iVt þ c Vxx þ Vyy

� �
þ a b Uj j2þ Vj j2

� �
V ¼ 0; in X � 0; T½ �;

U x; y; 0ð Þ ¼ U0; V x; y; 0ð Þ ¼ V0; in X:

8
>><

>>:
ð1Þ

The solution of (1) has the following conservation

invariants,

Q1 tð Þ ¼
Z1

�1

Z1

�1

Uj j2dxdy;Q2 tð Þ ¼
Z1

�1

Z1

�1

Vj j2dxdy;

Q3 tð Þ ¼
Z1

�1

Z1

�1

c Uxj j2þ Uy

�� ��2þ Vxj j2þ Vy

�� ��2
� �

� a
2

Uj j4þ Vj j4
� �

� b Uj j2 Vj j2dxdy;

ð2Þ

where Q1 and Q2 are called the mass conservation while Q3

is called the energy conservation. These invariants satisfy

the conditions: dQ1=dt ¼ dQ2=dt ¼ dQ3=dt ¼ 0. Here,

X 2 R2 is a bounded domain, T\? and i ¼
ffiffiffiffiffiffiffi
�1

p
, where

the functions U, V are complex functions in x, y and t, that

represent the solutions of system (1). In nonlinear optics, it

is commonly termed that |U|2 and |V|2 represent the optical

power while the parameters a, b and c represent Landau

constant, wave–wave collision coefficient (coupling coef-

ficient) and dispersion coefficient, respectively. These

parameters are considered real and their values differ for

various polarizations in nonlinear optics or for different

types of geophysical fluid flows. When b = 0, the CNLS

system (1) turns into 2 decoupled nonlinear Schrödinger

(NLS) equations, whereas for b = 1, the considered system

is transformed into Manakov system. Both the decoupled

NLS system and Manakov system are integrable and the

interaction of their soliton waves shows the elastic colli-

sion. However, for other values of b, The CNLS system

becomes nonintegrable where the solitons interaction is

called inelastic collision. In this case, many complex

phenomena such as transmission of solitons, reflection of

solitons, fusion of solitons and creation of a new vector

soliton can occur. It is known that for (1 ? 1)-dimensional

integrable systems of coupled nonlinear Schrödinger

equations, one can analytically only find exact solutions

describing soliton reflections. However, in the (2 ? 1)-di-

mensional case, these systems loss their integrability and

hence we have to utilize numerical methods for discovering

the phenomena of soliton–wall reflection and soliton–

soliton collision. In the literature, there are limited studies

that investigate analytically the soliton interactions and

reflections for (1 ? 1)-dimensional integrable systems

[18–21]. Various numerical techniques have been utilized

for solving many nonlinear Schrödinger-type equations

[22–25]. Recently, the soliton reflections from different

rigid walls for the (2 ? 1)-dimensional cubic NLS equa-

tions are numerically simulated using a Crank–Nicolson

finite element technique [26], in which the authors exam-

ined the reflection of a single solitary wave for a nonlinear

Schrödinger equation subjected to three different boundary

conditions. In our study, we extend the study of [26] to

simulate both of reflections and collisions soliton waves for

2D coupled nonlinear Schrödinger system using a forth

order robust numerical scheme based on the well-known

method of lines (MOL) [27–31]. The proposed numerical

scheme is inspected for stability and accurateness. The

developed scheme is conditionally stable in its linearized

form based on von Neumann stability analysis. The sce-

narios of soliton–soliton and soliton–wall interactions need

that the considered system is subjected to pre-defined

boundary conditions. Both zero-Dirichlet and zero-Neu-

mann boundary conditions are considered in the current

work.

This paper is prepared as follows: in the next section, we

briefly clarify the MOL and construct a fourth-order

explicit numerical scheme for the (2 ? 1)-dimensional

CNLS system. Section 3 contains the stability condition

based on linearized von Neumann stability. Several

numerical tests with different initial data are considered in

Sect. 4. Simulation of many scenarios that describe elastic

and inelastic soliton waves reflections and collisions for the

(2 ? 1)-dimensional CNLS system are also illustrated in

Sect. 4. Conclusions are composed in Sect. 5.

2. Numerical scheme

In order to use the MOL for solving system (1), we must

decompose the dependent variables U, V in their real and

imaginary parts using,

U ¼ P1 þ iP2

V ¼ P3 þ iP4

(

; ð3Þ

where Pj

� 	4

j¼1
are real-valued functions. By substituting

Eq. (3) into system (1), we can obtain the following matrix

form system:

Pt þ cA Pxx þ Pyy

� �
þ aF Pð ÞP ¼ 0; ð4Þ

where

P¼

P1

P2

P3

P4

2

6664

3

7775
; A¼

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

2

6664

3

7775
; F Pð Þ¼

0 q1 0 0

�q1 0 0 0

0 0 0 q2

0 0 �q2 0

2

6664

3

7775
;

q1 ¼ P2
1 þ P2

2

� �
þ b P2

3 þ P2
4

� �
and

q2 ¼ b P2
1 þ P2

2

� �
þ P2

3 þ P2
4

� �
:
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Now, the spatial coordinates x and y in system (4) will

be discretized with a uniformly rectangular mesh ofM 9 N

points, where xl = a ? l h, ym = b ? m k, l = 1, 2,..., M,

m = 1, 2,..., N, X = [a, b] 9 [c, d] and h = (b - a)/M,

k = (d - c)/N are the spatial step sizes of the grid. A

fourth-order central finite difference formula is used to

approximate the spatial second-degree derivatives at each

mesh point. Then, the fourth-order Runge–Kutta method

(RK4) is applied as time integrator for solving the resulting

first-order ordinary differential equations subjected to the

pre-defined initial data using a suitable time step s in the

range 0 B t B T. Applying a fourth-order central differ-

ence operator to system (4) gives the following first-order

ordinary differential equations system,

dPl;m

dt
¼ S Pl;m

� �
; ð5Þ

where

S Pl;m

� �
¼ c

12
A

1

h2
Pl�2;m � 16Pl�1;m þ 30Pl;m � 16Plþ1;m þ Plþ2;m

� �

þ 1

k2
Pl;m�2 � 16Pl;m�1 þ 30Pl;m � 16Pl;mþ1 þ Pl;mþ2

� �

0

BB@

1

CCA

� aF Pl;m

� �
Pl;m:

ð6Þ

Using the RK4, the solution of system (5) will be

calculated as follows:

Pnþ1
l;m ¼ Pn

l;m þ 1

6
L1 þ 2L2 þ 2L3 þ L4½ �; ð7Þ

where n is the time index and

L1 ¼ s S Pn
l;m

� �
; L2 ¼ s S Pn

l;m þ 1

2
L1


 �
;

L3 ¼ s S Pn
l;m þ 1

2
L2


 �
; L4 ¼ s S Pn

l;m þ L3

� �
:

ð8Þ

The explicit finite difference scheme (7) is of 4th order

in both time and space. It is easy to apply, and it is

predicted to give accurate results as we will discuss later.

The only disadvantage of the scheme is stability restriction

that will be discussed in the succeeding section.

3. Stability restriction

To deduce the stability condition for the finite difference

scheme (7), we use a linearized von Neumann stability

analysis [32]. The linear version of system (4) can be

written as follows:

Pt ¼ �cA Pxx þ Pyy

� �
� a qAP; ð9Þ

where q ¼ max q1; q2f g.

Based on the von Neumann stability method, one can

write the solution of the linearized system (9) in single

Fourier mode as

Pn
l;m ¼ nn eik l h eidmk; l ¼ 1; 2; : : : ; M and m

¼ 1; 2; : : : ; N; ð10Þ

where n is the amplification vector and the parameters k; d
are real constants. Substitution (10) in system (9) gives to

the following equation,

eS Pn
l;m

� �
¼ eAPn

l;m: ð11Þ

where eS is the RHS of system (9) after spatial derivatives

discretization and the parameter e is defined as

e ¼ c
12

1

h2
2 cos 2k hð Þ � 32 cos k hð Þ þ 30ð Þ

�

þ 1

k2
2 cos 2d kð Þ � 32 cos d kð Þ þ 30ð Þ



� a q:

ð12Þ

Substituting of (11) into (7) gives to the following

matrix form equation:

B ¼ Iþ
X4

j¼1

1

j!
s eAð Þ j; ð13Þ

where I means the identity matrix. The eigenvalues of the

matrix B are notated by ´. Based on to the von Neumann

analysis, the required condition needed for the

scheme stability is that max
j

´j
�� ��� 1; j ¼ 1; 2; :::; 4.

Computing for the matrix B eigenvalues, we get

´j
�� ��2¼ 1� s eð Þ6

72
þ s eð Þ8

576
; 8 j ¼ 1; 2; :::; 4: ð14Þ

From Eqs. (12) and (14), we can guarantee that ´j
�� ��� 1

if the following condition is satisfied,

s� 3
ffiffiffi
2

p

16c h2ð Þ�1þ k2ð Þ�1
h i

� 3 a q
: ð15Þ

4. Numerical tests

To examine the effectives of the scheme in simulating

soliton interactions for the (2 ? 1)-dimensional CNLS

system, we consider several numerical examples related to

system (1). The conservation of the scheme is inspected by

computing the mass and energy conserved quantities at

different times. We use the composite trapezoidal rule to

calculate the integrals associated with the conserved

quantities. Zero-Neumann boundary conditions

(oU=on ¼ oV=on ¼ 0; on oX) are applied to all boundaries

of the considered numerical tests. As a generalization to all

A conservative numerical scheme for capturing interactions–ùÚ



numerical tests, we also solved the first test subjected to

zero-Dirichlet boundary conditions (U ¼ V ¼ 0; on oX) to
illustrate how the solitons interact to the boundary for both

boundary conditions types. For all considered numerical

examples, the solutions are calculated for the following

parameters c = 1/2, a = 1, to study the impact of the wave–

wave collision coefficient b on the interactions of the

vector soliton. The step sizes of space and time are selected

as h = 0.05, k = 0.02 and s = 10–4, over the domain X =

[– 20, 20] 9 [– 5, 5] up to time T = 60.

4.1. Elastic interaction of three superposition solitons

Firstly, we consider system (1) subjected to the initial

conditions defined by a superposition of three soliton

waves that propagate with different velocities with dis-

similar initial locations and amplitudes. Here, we use the

following initial conditions considered in [12],

U0 ¼ V0

¼
X3

m¼1

ffiffiffiffiffiffiffiffiffiffiffi
2 gm
bþ 1

s

sech
ffiffiffiffiffiffiffiffiffi
2 gm

p
x� xmð Þ

� �
ei sm x�xmð Þð Þ;

ð16Þ

where xm, sm and gm are arbitrary parameters standing for

soliton wave initial locations, velocities and widths/am-

plitudes, respectively. Here, the parameters are selected as

follows: g1 = 1.0, g2 = 0.5, g3 = 0.8, s1 = 1.0, s2 = 0.1,

s3 = - 1.0, x1 = - 10, x2 = 0, x3 = 10 and b = 2/3. Here,

the profiles of the solutions U and V are identical. The

solutions are obtained in the case of Neumann and

Dirichlet boundary conditions to display in what way the

soliton interaction to the boundaries becomes in each case.

The modulus value of the solutions |U| and |V| are plotted

for selected values of t. The trajectories of the interactions

and reflections of the three solitons for selected moments

are displayed in Fig. 1.

For more clarification of soliton interactions, contours

and 3D surface illustrations that describe the profiles of |U|

and |V| along the horizontal cross section line (y = 0) are

displayed in Fig. 2 (when using zero-Neumann boundary

conditions) and Fig. 3 (when using zero-Dirichlet boundary

conditions) up to t = 60. From the interaction scenario of

the three solitons displayed in Figs. 1, 2 and 3, one can see

that two of them propagate in the same direction with

unlike speeds, while the third soliton moves in the opposite

direction before reflecting two of them from the wall. After

the solitons–wall reflection, the reflected waves reverse

their directions. The solitons–wall interaction is perfect

(elastic) for both the Dirichlet and Neumann boundary

conditions, however the soliton shapes at the boundaries

are slightly different. It is worth noting that the solitons

elastically collided each other and departure the collision

region unchanged in speeds or shapes. During the simula-

tion period, there are two soliton–wall reflections of the

fast waves that initially positioned at x = - 10 and x = 10,

near t & 28.5. The reflected waves experience a slight

deformation in their shapes after the collision with the

walls and then retain their initial shapes when reversing

their directions. Here, the solitons can experience an

unlimited number of interactions without any decaying in

their energy during the propagation because of the nature

of the elastic interaction.

In Table 1, the mass and energy conserved quantities Q1,

Q2 and Q3 at selected moments are listed in the case of

using zero-Neumann boundary conditions. The values of

the conserved invariants at t = 0 are estimated by inte-

grating (2) numerically when U = U0 and V = V0 over the

considered domain X. From Table 1, it can be observed

that the mass quantities Q1 and Q2 are exactly conserved at

44.1501696 while the energy quantity Q3 is almost con-

served at 8.683.

4.2. Inelastic interactions of two different solitons

In the next numerical experiments, we consider five

interaction scenarios that describe the inelastic vector

soliton interactions. Some of such scenarios are informed

in [8, 12] for (1 ? 1)-dimensional NLS systems. The

inelastic interactions occur when the coupled nonlinear

Schrödinger system isn’t integrable. The value of the

coupling coefficient b plays a significant role in shaping the

behavior of vector soliton interaction in a long-term sim-

ulation. Here, system (1) is solved corresponding to zero-

Neumann boundary conditions and the next initial soliton

waves,

U0 ¼
ffiffiffiffiffiffiffiffi
2 g1

p
sech

ffiffiffiffiffiffiffiffi
2 g1

p
x� x1ð Þ

� �
ei s1 xð Þ;

V0 ¼
ffiffiffiffiffiffiffiffi
2 g2

p
sech

ffiffiffiffiffiffiffiffi
2 g2

p
x� x2ð Þ

� �
ei s2 xð Þ:

ð17Þ

Here, the two initial solitons are selected in such a way

that they move in an opposite direction with equal velocity,Fig. 1 Trajectory of three solitons elastic interactions at selected

moments
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dissimilar initial locations and different amplitudes. For all

considered tests, we fix parameters of wave initial positions

and wave widths/amplitudes as x1 = - 10, x2 = 10,

g1 = 1.1 and g2 = 1.0.

4.2.1. Scenario 1 (Soliton transmission)

Firstly, we select b = 0.6 and s1 = - s2 = 0.8. In this case,

the value of b is moderate and the velocity of the waves is

relatively high. The scenario of soliton–soliton collisions

and solitons–walls reflections is shown in Figs. 4 and 5. As

shown in these figures, the two waves collided around at

Fig. 2 (a) 3D surface plot and (b) contour plot of |U| and |V| along the line y = 0 in case of three solitons interactions (when applying zero-

Neumann conditions)

Fig. 3 (a) 3D surface plot and (b) contour plot of |U| and |V| along the line y = 0 in case of three solitons interactions (when applying zero-

Dirichlet conditions)

A conservative numerical scheme for capturing interactions–ùÚ



t & 13. After the soliton collision, the two waves pass

through each other with a slight variation in their profiles

and daughter waves are transmitted with some radiation

shedding (small wavelets). The generated daughter waves

are small waves that split off from the original wave and

spread alongside it but in a reversed direction. The

amplitudes of the daughter pulses and the quantity of the

generated wavelets are dependent on the value of b and on

the initial soliton’s velocities. Both original solitons and

daughter waves hit the boundaries and reflected at the same

time, approximately at t & 37. This means that the

velocities of the waves remain equal after the soliton col-

lision. The soliton and daughter waves experience some

changing in their shapes during the reflection moment and

then retrieve their initial shapes but in a reverse direction

with little energy decaying. Up to t = 60, the mass quan-

tities Q1 and Q2 are exactly conserved at 29.664794 and

28.284271, respectively, while the energy quantity Q3 is

conserved at - 1.8859 for all moments excluding the

values calculated during the moment of waves–walls

reflections, e.g., Q3(37) = - 1.7901. After the reflection,

Q3 retrieves its conservative value of - 1.8859 until the

end of the simulation.

4.2.2. Scenario 2 (Soliton reflection)

In this numerical test, we select b = - 0.6 and s1 = -

s2 = 0.8. Here, we change the sign of the parameter b to

investigate soliton interactions when b \ 0. This scenario

is displayed in Figs. 6 and 7. In this case, when sign of b is

negative, the two originally soliton waves don’t pass

through each other but break up and reflected off each other

after the collision (around at t & 13). For each wave, the

large part of the energy is reflected while the remaining

portion is transmitted causing some radiations shedding

and wavelets. The amount of the developed radiations

depends on the value of the relative speed s1 – s2. It can be

realized that after the soliton–soliton reflection, each wave

travels in an opposite direction until the collision to the

walls and hence recovers its initial direction. The left wave

is reflected once again from the left wall at t & 41.2 while

the right wave is reflected from the right wall at t & 38.2.

This difference in the time at which the two waves hit the

boundaries is due to the different velocities after their

collision. The left wave obviously gains some energy from

the right one during the collision. Throughout the period of

the simulation, the conserved invariants Q1, Q2 and Q3 are

precisely conserved at the same values of scenario 1 except

the invariant Q3 at the moments in which the waves hit and

reflect from the walls. For example, and not as a limitation,

Q3(38.2) = - 2.4274 and Q3(41.2) = - 1.0643. After the

wave–wall reflection, Q3 recovers its quantity of – 1.8859

until the end of the simulation. If the relative speed is large,

then the two solitons pass through each other as shown in

Fig. 8 which presents the interaction when s1 = - s2 = 2

(large relative speed) and b = - 0.6.

4.2.3. Scenario 3 (creation of new transmission vector

soliton)

In this scenario, we simulate a formation of new trans-

mission vector soliton when the coupling coefficient b
takes a large positive value with a small relative speed.

Here, we chose b = 3 and s1 = - s2 = 0.4. The profile of

the interactions of the vector soliton is displayed in Figs. 9

and 10. As illustrated in these figures, the interactions

expose new structures. After collision (around at t & 24),

the two soliton waves are meaningfully reshaped, bulky

daughter waves are formed and radiations are shed as well.

The new waves that are generated after the collision travel

at velocities and directions very different from those of the

initial two soliton waves. Commonly, large positive values

of b, the interactions become quantitatively complex but

qualitatively simple. After collision, the outcome is a few

stable standing waves collected with some small wavelets

and radiations. Up to t = 60, Q1 and Q2 are accurately

conserved at 29.664794 and 28.284271, respectively, while

Q3 is almost conserved at - 15.7359 for all moments

excluding the values calculated during the moment of

waves–walls interaction, e.g., Q3(41) = - 15.2304 and

Q3(43.5) = - 16.9449.

Table 1 Mass and energy conserved quantities of numerical test 4.1 at selected moments

t Q1, Q2 Q3 t Q1, Q2 Q3

0.0 44.15016965 8.682933350 28.5 44.15016962 8.682813740

3.0 44.15016966 8.682933350 35.0 44.15016962 8.682933865

9.0 44.15016966 8.682933295 44.5 44.15016964 8.682933370

23.0 44.15016965 8.682933980 60.0 44.15016960 8.682934780
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4.2.4. Scenario 4 (Creation of new reflection vector

soliton)

In this scenario, we consider s1 = –s2 = 0.4 and b = - 3.

The behavior of the interaction of this vector soliton is

presented in Figs. 11 and 12. It can be shown that after the

soliton collision (around at t & 24), each wave is totally

reflected and traveled in an opposite direction. This occurs

when selecting a small relative speed with a large negative

value of the coupling coefficient b. Here, the transmitted

wavelets and radiations are almost negligible because the

relative speed is small. During the computational time, the

waves don’t interact with the wall because of considering a

slow wave velocity. The mass and energy invariants Q1, Q2

and Q3 are precisely conserved at 29.664794, 28.284271

and - 15.735882, respectively, up to t = 60.

Fig. 4 Trajectory of scenario 1 interactions when b = 0.6 and s1 = - s2 = 0.8, (a) |U| and (b) |V|

Fig. 5 (a) 3D surface plot of |U|, (b) 3D surface plot of |V| and (c) contours plot of |U| and |V| together along the line y = 0 when b = 0.6 and

s1 = - s2 = 0.8

Fig. 6 Trajectory of scenario 2 interactions when b = - 0.6 and s1 = –s2 = 0.8, (a) |U| and (b) |V|

A conservative numerical scheme for capturing interactions–ùÚ



4.2.5. Scenario 5 (Soliton fusion)

Finally, we consider a small positive value coupling

coefficient and a small relative speed. The parameters are

chosen as b = 0.2 and s1 = –s2 = 0.3. The profile of this

scenario is illustrated in Figs. 13 and 14. It can be noticed

that the two soliton waves fusion into one wave after the

collision occurs around at t & 33. The fusion of two

solitons commonly occurs when selecting small positive

value b and small value of the relative speed. Concerning

the conserved quantities, Q1, Q2 and Q3 are exactly con-

served at 29.664794, 28.284271 and - 17.7566, respec-

tively, throughout the simulation period.

Fig. 7 (a) 3D surface plot of |U|, (b) 3D surface plot of |V| and (c) contours plot of |U| and |V| together along the line y = 0 when b = - 0.6 and

s1 = -s2 = 0.8

Fig. 8 (a) 3D surface plot of |U|, (b) 3D surface plot of |V| and (c) contours plot of |U| and |V| together along the line y = 0 when b = - 0.6 and

s1 = –s2 = 2

Fig. 9 Trajectory of scenario 3 interactions when b = 3 and s1 = –s2 = 0.4, (a) |U| and (b) |V|
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5. Conclusions

In this work, a robust fourth-order conservative numerical

scheme was developed and analyzed to capture different

types of soliton interactions and reflection scenario for 2D

CNLS system. The stability restriction of the scheme was

deduced. The ability of the scheme to preserve both mass

and energy was illustrated numerically throughout the

long-time simulation. This preservation ability reflects the

reliability and accuracy of the proposed scheme. The

reflections of the soliton waves when colliding the

boundaries have been simulated for two types of boundary

conditions. The type of the boundary condition affects the

wave shape only during the interaction with the wall. In the

case of elastic interactions, the vector soliton can do an

infinite number of interactions without any change in their

shapes except at the boundaries. But for the inelastic sce-

narios, the soliton wave suffers from a deformation in its

shape and some energy decaying, where the daughter

waves, small wavelets and radiations begin to appear. The

Fig. 10 (a) 3D surface plot of |U|, (b) 3D surface plot of |V| and (c) contours plot of |U| and |V| together along the line y = 0 when b = 3 and

s1 = –s2 = 0.4

Fig. 11 Trajectory of scenario 4 interactions when b = - 3 and s1 = –s2 = 0.4, (a) |U| and (b) |V|

Fig. 12 (a) 3D surface plot of |U|, (b) 3D surface plot of |V| and (c) contours plot of |U| and |V| together along the line y = 0 when b = - 3 and

s1 = –s2 = 0.4
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value and sign of the parameter b play an important role in

shaping the vector soliton; and in the number of transmitted

daughter waves; and in the amount of generated radiations.

The speed of initial solitons has a significant impact as

well. This work offers new results associated with the

interaction and reflection of soliton waves in (2 ? 1)-di-

mensional NLS systems. The obtained results are quite

general and can be applied to other nonlinear Schrödinger-

type systems.
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