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A B S T R A C T

Successful deep brain stimulation surgery for Parkinson’s disease (PD) patients hinges on

accurate clustering of the functional regions along the electrode insertion trajectory. Micro-

electrode recording (MER) is employed as a substantial tool for neuro-navigation and local-

izing the optimal target, such as the subthalamic nucleus (STN), intraoperatively. MER

signals deliver a framework to reveal the underlying characteristics of STN. The motivation

behind this work is to explore the application of Higher-order statistics and spectra (HOS)

for an automated delineation of the neurophysiological borders of STN using MER signals.

Database collected from 21 PD patients were used. Two HOS methods (Bispectrum and

cumulant) were exploited to probe non-Gaussian properties of STN region. This is followed

by utilizing classifiers, namely K-nearest neighbor, decision tree, Boosting and support vec-

tor machine (SVM), to choose the superior classifier. Comparison of the performance

achieved via HOS alongside the state-of-the-art techniques shows that the proposed fea-

tures are better suited for identifying STN borders and achieve higher results. Average clas-

sification accuracy, sensitivity, specificity, area under the curve and Youden’s J statistics of

94.81%, 96.73%, 92.15%, 0.9444% and 0.8888, respectively, were yielded using SVM with 8

bispectrum and 241 cumulants features. The proposed model can aid the neurosurgeon

in STN detection.
� 2021 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Parkinson’s disease (PD) is a long-term progressive, neurode-

generative disorder caused by the death of cells in the basal

ganglia (BG) region [1]. Death of cells causes deficiency of

dopamine which is responsible for controlling the human

body movements [2,3]. As a result, communication modes in

the brain are affected [4]. PD affects people over the age of

sixty years old [5]. PD is characterized by major symptoms

that include stiffness, bradykinesia [6], resting muscle tremor

[7,8], rigidity [9] and sleep disorders [10]. Therefore, deep brain

stimulation (DBS) surgery is increasingly being used for allevi-

ating symptoms of advanced PD patients whose condition

has worsened or who are no longer reactive to drug treatment

[11–13].

DBS is an interventional treatment which encompasses

implantation of an electrode in either subthalamic nucleus

(STN) [14] or the internal segment of the globus pallidus

(GPi) [15,16], in order to deliver high frequency electrical

impulses to these specific targets [17]. Therefore, efficient

therapeutic effect of DBS hinges on localizing the target struc-

ture within the brain with a high accuracy such as, the stim-

ulation of adjacent functional regions has been demonstrated

to cause adverse side effects on motor [18], emotional and

cognitive functions [10]. Besides, inaccurate positioning of

DBS electrodes causes up to 40% of cases with insufficient

postoperative stimulation effectiveness [19,20]. Dorsolateral

somatosensory region inside the STN is found to be the best

place to apply stimulation for PD patients [21].

The most common modalities used to plan for electrode

insertion trajectory include, magnetic resonance imaging

(MRI) and computer tomography (CT) scans [22]. However,

due to resolution limitations of neuroimaging [23], additional

adjunctive information from intraoperative guidance is

essential. Consequently, MER is employed in real time testing

during DBS surgery for validating the planned trajectories in

an effort to achieve optimal positioning of electrodes inside

the target structure [24]. Additionally, intraoperative delin-

eation of STN borders and its surrounding structures using

MER signals can reduce targeting errors by overcoming brain

deformation and account for anatomic shifts due to cere-

brospinal fluid leakage [25]. MER allows capturing extracellu-

lar electric activity of neurons in the closest vicinity of

electrodes with a tip size around 1 lm, then, the time domain

behavior is inferred intraoperatively by a trained neurologist

and/or neurosurgeon while listening to the signal through

speakers [26].

Nevertheless, mental interpretation of MER signals for

STN segmentation possess several challenges such as, they

are non-stationary and have complex signal patterns [27].

Also, there is a difficulty in visual inspection of MER signals

due to the presence of artifacts from several sources such

as, devices in the operating room, patient speech, electrode

movement and blood [26]. Besides, anatomic challenges

including that STN has a small size (about 4*7*9 mm), is deep

located in the brain and surrounded by structures, for

instance, substantia nigra (SNr) and zona incerta (ZI) [28]. Fur-

thermore, uninterrupted transition from STN to SNr and the

presence of white matter gaps may lead to wrong labeling
of STN exit [29]. Moreover, it is time consuming and there is

a critical reliance on subjective evaluation and judgement

which could result inconsistencies in MER analysis for STN

identification [30]. Therefore, automation of STN borders

detection is very important to elude the aforementioned chal-

lenges, reduce the surgery time and improve patient comfort

during the surgery [31].

In recent years, identification of STN region using MER sig-

nals has drawn substantial attention of many researchers,

such as, MER analysis using either linear or non-linear tech-

niques could depict inherent biomarkers of STN, which can

reveal neural mechanisms in PD patients and show a quan-

tifiable target to implant the DBS electrodes [32]. Feature

extraction is considered to be a significant stage in the STN

localization model. Meaningful features will maximize the

performance of the automation process to outline the dorsal

as well as the ventral borders of STN. Researchers have pro-

posed several methods for STN localization using numerous

features, ranging from spike dependent (SD) to spike indepen-

dent (SI) features or combination of them [19]. Wong et al. [33]

extracted multiple SD and SI features then, fed them to an

unsupervised machine learning approach to identify the

STN borders. They suggested that using different combina-

tions of features may ameliorate the system performance.

In this regard, Cagnan et al. [30] utilized firing rate, back-

ground neural activity in addition to power spectral density

(PSD) of low, beta and gamma band indices with correspond-

ing frequencies of (3–12 Hz), (13–30 Hz) and (31–100 Hz), in

that order. Higher values in STN region were shown in all

the features except for PSD of low band. They obtained an

accuracy of 88% in comparison to surgical annotations. Also,

Ciecierski et al. extracted a combination of SD attributes (e.g.

modified burst ratio and spike frequency) and background

neural features (e.g. root mean square (RMS), amplitude and

frequency power in 0–500 Hz and 500–3000 Hz) with rough

set exploration system (RSES) and random forest (RF) classi-

fier [31] as well as k-means and hierarchical clustering algo-

rithms [34] for STN segmentation. Schiaffino et al. [35]

employed 15 SD and SI features with fuzzy k-Nearest Neigh-

bour (KNN) and accomplished sensitivity and specificity of

72% and 82%, respectively. Similarly, in [25], decision trees

(DT), Bayesian and KNN classifiers based on 13 SD and SI fea-

tures were utilized for automated clustering of STN, SNr and

ZI. DT with Gini and Max Deviance indices obtained highest

accuracy of 87.55% and 89.6%, separately. On the other hand,

Bayesian and KNN achieved highest accuracy of 82.84% and

82.25%, correspondingly. Therefore, they reported that feature

addition can improve system performance to a certain limit

due to the fact that any inappropriate or redundant features

would decrease the classification accuracy. This emphasizes

that not all the features used in their model were convenient.

As a result, they suggested that feature selection is crucial for

reliable STN localization framework [19].

Accordingly, Rajpurohit et al. [36] exploited feature selec-

tion and patient-specific normalization approaches with

logistic regression (LR) classifier to achieve an increase of

38.92 in terms of accuracy compared with using all the fea-

tures. Authors in [37] investigated up on previous study [35]

and used Branch & Bound algorithm to select 6 out of 16
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features and inputted them to KNN classifier, obtaining a

detection accuracy of 86.13%. In [38], backward and forward

wrapper techniques were used for feature selection, resulting

decreased classification error of 1.21% and 1.13%, in that

order. Also, the number of selected features was one third of

the total 18 features, which would decrease the execution

time and improve the computational efficiency of their model.

Traditional spectral methods (e.g. PSD and fast Fourier

transform (FFT)) were applied in previous studies to probe

vital signatures of STN region using MER signals. Valsky

et al. [29] revealed a high discrimination between STN and

SNr in two frequency ranges (i.e. low frequency range 5–

25 Hz and high frequency range 100–150 Hz). Consequently,

they developed a new feature which is the ratio of the mean

power of the two aforementioned frequency ranges. They

were able to identify STN with accuracy of 94% using hidden

Markov model (HMM). Khosravi et al. [39] employed FFT for

feature extraction from MER signals. They implied that,

unlike traditional features [36], FFT has the ability to highlight

the alterations in spike activities. Besides, FFT may be more

informative and achieved 85% accuracy using LR classifier.

They also validated the extracted features using an unsuper-

vised technique, combination of K-means clustering and self-

organized map (SOM), to obtain an accuracy of 80% [40]. How-

ever, Chaovalitwongse et al. [25] reported against frequency

based features, indicating that the frequency components of

MER data alone do not provide crucial information of STN

region, because the performance of all classifiers were lower

than 50%. In addition, the accuracy of the best performing

classifier (DT) dropped by 41.86% when compared with

employing a combination of SD and SI features.

Meanwhile, focus on MER signals classification using

time–frequency analysis is on the rise. Several algorithms

which have the advantage of displaying the frequency profile

and maintaining excellent frequency resolution, were

exploited for the development of accurate STN localization

strategies [41,28,27,42]. Authors in [41] found a significant dif-

ference between STN and non-STN regions in the two

detailed wavelet coefficients sub-bands D1 and D2 with the

corresponding MER frequency ranges of 3–6 kHz and 1.5–3

kHz, individually. Such as, the entropy calculated from these

coefficients are higher in STN, probably due to the more irreg-

ularity of MER signals originate form STN in these frequency

ranges. Highest accuracy of 83% was acquired by RF classifier.

In their contribution, the work of Vargas Cardona et al. [27]

has led to the development of an automated method for

STN segmentation problem using inter-spike interval (ISI),

adaptive wavelets and wavelet transform (WT). For classifica-

tion, they used multi-task Gaussian process regression with

the linear model of coregionalization (LMC), intrinsic core-

gionalization model (ICM) and convolved multiple output

covariance (CMOC), and achieved the accuracy of 85.99%

and 84.1% using two different datasets. In parallel, in 2020,

Karthick et al. [28] reported the use of machine learning clas-

sifiers based on wavelet packet decomposition (WPD) features

to delineate the neurophysiological borders of STN in MER

signals. As reported therein, additional information of low

and high frequency components can be assembled by WPD

approach. Their method yielded average classification accu-

racy of 94%.
Recently, higher-order statistics and spectra (HOS) tech-

nique has been commonly used to extract subtle variations

in bio-signals and achieved promising results in various

applications for instance, PD diagnosis [43], seizure prediction

[44] and identification of coronary artery disease [45]. Despite

that, HOS has not yet been applied to MER signals of PD

patients for STN segmentation. Consequently, this study con-

centrates on exploiting HOS to discover the hidden non-linear

parameters and understand the neural basis from MER sig-

nals which are essential to enable the automated detection

of STN region. The work flow of the proposed system is dis-

played in Fig. 1. After segmentation and preprocessing of

MER signals, the features are extracted using HOS and classi-

fied by several machine learning classifiers. Furthermore, in

this study, we have extracted two groups of features, which

were reported in the scientific literature discussed earlier, in

order to confront the performance of the proposed HOS fea-

tures with the existing methods in the field of MER analysis.

The first group is the state-of-the-art nine SD and SI features

reported in [36,40,46,38,25]. The second group is the WPD

based features suggested in [28] as a reliable source of infor-

mation for classifying the MER signals originate from inside

and outside the STN region based on the electrophysiological

activity. The aforementioned two groups of features in addi-

tion to the developed HOS features were fed to 10 machine

learning classifiers. The results of the comparative study

show that the proposed HOS model improved the classifica-

tion efficacy in comparison to the existing methods.
2. MER recordings and surgical procedure

In this study, MER data were recorded for electrophysiological

exploration of idiopathic PD patients during DBS surgery. Data

were collected from the First Affiliated Hospital of Harbin

Medical University, Harbin, China. The collected data com-

prised of 832 single channel recordings obtained from 21

patients (11 males and 10 females; age: 65:1� 5:6 years).

Among them, 18 patients were inserted in both hemispheres

(bilaterally) and only 3 patients were inserted unilaterally,

therefore, data included 39 MER trajectories. Table 1 describes

MER data used in this study.

All patients were implanted in STN using one microelec-

trode (Medtronic, Inc.). MER signals were recorded using the

MicroGuide system (AlphaOmega Engineering, Nazareth,

Israel) at a sampling rate of 24 kHz, 8-bit converter and a total

gain of 10000. MER recordings were labeled according to their

corresponding location (i.e. whether inside or outside STN)

into two classes (STN and non-STN). Total length of MERs

are 5273 s (over 1 h and 27 min), among this, 3206 s are asso-

ciated with STN region, while the rest 2067 s stem from non-

STN region. All patients discontinued taking long-acting and

short-acting dopaminergic medications 72 and 12 h prior to

the surgery, in that order. Also, they had established at least

30% improvement in the unified Parkinson’s disease rating

scale (UPDRS), and were awake during the surgery. Data col-

lection was considered to be a part of an unaltered standard

surgical procedure.

Surgical planning is based on fusion between preoperative

1.5T MRI (T1 and T2 weighted) and intraoperative stereotactic



Fig. 1 – Block diagram of the proposed automated STN detection system.

Table 1 – Illustration of the collected MER recordings.

Patients Pos. Traj. STN (s) non-STN (s) Total (s)

21 832 39 3206 2067 5273

Pos. = Positions, Traj. = Trajectories.

d i a b e t e s r e s e a r c h a n d c l i n i c a l p r a c t i c e 4 1 ( 2 0 2 1 ) 7 0 4 –7 1 6 707
CT confirming evading of the blood vessels and ventricles.

STN coordinates and trajectory are identified through the

NeuroNav software using the fused images. Usually the tra-
jectory is designed to penetrate the thalamus (TH), ZI, STN

and SNr. MER signals are recorded starting from 10 mm above

the predetermined target to below the STN ventral border (i.e.

3–4 mm below the surgical zero-point). Generally, MER elec-

trodes are advanced in 1 mm steps at depth from 10 mm to

5 mm and (0.1–0.5 mm) steps at depth from 5mm to the

end. Neurologist waits for time at each depth before recording

to allow artifacts to be resolved. MER signals are assessed

intraoperatively by the neurologist to detect the neurophysio-

logical borders of STN. Intraoperative macro-stimulation and

postoperative T2 weighted MRI are used to ensure accurate
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positioning of DBS electrode inside the optimal target. Subse-

quently, the internal pulse generator (IPG) is inserted in the

chest with established connection to the implanted electrode.

All patients had signed the informed consent.

3. Methods

3.1. Preprocessing

The MER signals were separated into 1 s segments. Then, MER

segments were high pass filtered using a fifth order Butter-

worth filter with a cut-off frequency of 0.5 Hz to eliminate

any remaining offset and decrease the artifact components.

A fifth order zero-phase, non-causal, band-stop Butterworth

filter with lower and higher cutoff frequencies of 48 Hz and

52 Hz, in that order, was used to remove themains 50 Hz noise.

3.2. Feature extraction

3.2.1. Spike dependent and independent

� Standard deviation of the time differences between

the spikes of 1s segments.

� Spiking rate: the number of spikes per unit time in

each segment.

� Pause index: the ratio of the number of inter-spike

intervals higher than 50 ms to the number of those

less than 50 ms.

� Pause ratio: the ratio of the cumulative time of inter-

spike intervals higher than 50 ms to the total time of

those less than 50 ms.

� Teager energy (W): the average of the non-linear

energy. Presence of high frequency signals is associ-

ated with higher values of this feature, and defined by:
W ¼ 1
N� 2

XN�1

i¼2

x2
i � xi�1xiþ1 ð1Þ
where each xi is a sample of the data X =

(x1; x2,. . .. . ...,xn) and N is the total number of samples

in each signal.

� Root mean square (d): the square root of the mean of

the sum of the squares of the signal, and defined by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis

d ¼

PN
i¼1x

2
i

N
ð2Þ
� Curve length (L): the sum of succeeding distances

between points in 1s MER signal. Unstable values of

the signal is associated with higher values of this fea-

ture, and defined by:
L ¼
XN�1

i¼1

jxiþ1 � xij ð3Þ
� Zero crossing (ZC): the number of zero crossings in

each 1s MER signal, and defined by:
ZC ¼ 1
2

XN�1

i¼1

jsgn xiþ1ð Þ � sgn xið Þj ð4Þ
� Threshold (c): the deviation of the data in a window of

size N, and defined by:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiv

c ¼ 3

N� 1

XN
i¼1

xi � X
� �2uut ð5Þ
where X is the mean of the data vector.

3.2.2. Wavelet packet decomposition (WPD)
Wavelet analysis has been found very potent in manifesting

non-stationary signals [47–49]. WPD, which is a generalization

of the traditional WT [50], can optimize the analysis of such

signals by producing the frequency content with a flexible

resolution [28]. WT decomposes the input signal in the first

level by passing it through a series of high and low pass filter

banks to yield detail and approximate coefficients, respec-

tively. However, in the subsequent levels, WT decomposes

only approximation coefficients of the input signal and detail

coefficients are never reanalyzed. As a result, pivotal higher

frequency information will be lost. Accordingly, WPD decom-

poses the detail coefficients of the input signal as well as the

approximation coefficients with regard to construct a binary

tree of sub-bands. Therefore, 2n different sets of coefficients

emanate from WPD, if level equals n. Consequently, superior

frequency resolution is secured by WPD.

In this study, MER signals were decomposed into four

levels using WPD with Daubechies 4 mother wavelet. Four

statistical parameters: mean, variance, skewness and kurto-

sis were computed from each sub-band (i.e. 16 sub-bands).

Subsequently, 64 WPD based features were calculated. Mean

(l), variance (r2), skewness (b1) and kurtosis (b2) can be

defined by the following mathematical expressions:

l ¼ 1
N

XN
i¼1

xi ð6Þ

r2 ¼ 1
N

XN
i¼1

xi � lð Þ2 ð7Þ

b1 ¼
1
N

XN
i¼1

xi � l
r

� �3

ð8Þ

b2 ¼
1
N

XN
i¼1

xi � l
r

� �4

ð9Þ
3.2.3. Higher-order statistics and spectra (HOS)
HOS is a spectral illustration of third and higher order statis-

tics. It is used as a robust tool for preserving the non-linear

information of the time series signals [45]. MER signals are

expected to have non-linearities in the produced mechanism.

Therefore, HOS might provide the advantage of revealing fur-

ther non-linear and non-Gaussian characteristics of the PD

patients MER signals. In this study, a total of 8 bispectrum

and 241 cumulants features were extracted from 5273 MER

signals.

(i) Bispectrum features: Herein, the bispectrum (third-order

spectra) of the signal was calculated owing to its simplicity
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(i.e. Higher computational complexity emerges from increas-

ing the order) [43]. Bispectrum which shows symmetry and

reflects both the phase coupling degree and the amplitude,

can be governed by the following equation:

B f 1; f 2
� � ¼ E X f 1

� �
X f 2
� �

X� f 1 þ f 2
� �� � ð10Þ

where B(f 1; f 2), f 1; f 2 and X(f) denote the bispectrum, the fre-

quency components and the discrete time Fourier transform

calculated by FFT [45]. Unlike, conventional power spectrum,

bispectrum utilizes FFTwith functions of higher order correla-

tion to investigate the presence of quadratic and cubic non-

linear characteristics [44]. Eight features were extracted from

the bispectrum namely, the bispectrum mean magnitude

(BiMag), the normalized bispectrum standard deviation

(BiStd), the normalized bispectral entropy (BiNEnt1), the nor-

malized squared bispectral entropy (BiNEnt2), the bispectrum

logarithmic amplitudes summation (L1), the sum of logarith-

mic amplitudes of the diagonal elements in the bispectrum

(L2), the first-order spectral moment of amplitudes of the

diagonal elements of the bispectrum (L3) and the second-

order spectral moment of amplitudes of the diagonal ele-

ments of the bispectrum (L4) [43]. Bispectrum features are

beneficial to analyze the MER signals which are non-

Gaussian in nature. Epochs of 24000 samples (one second),

Hanning window, 50% overlapping, sampling rate of 24 kHz

and 512 NFFT points were used to calculate the bispectrum.

(ii) Cumulants features: HOS cumulants are used to discover

the higher order relationships that first and second order

statistics are not able to establish. Cumulants features are

robust to noise, in addition, can capture small changes in

the MER signals with the intention of distinguishing STN

and non-STN regions. Let x(k) be a digital signal, the nth order

cumulants of x(k) can be calculated using the nth order

moments. These moments are computed by taking an expec-

tation over the signal multiplied by lagged versions of itself as

given below:

mx
1 ¼ E x kð Þ½ � ð11Þ

mx
2 ¼ E x kð Þx kþ Tð Þ½ � ð12Þ

mx
3 ¼ E x kð Þx kþ T1ð Þx kþ T2ð Þ½ � ð13Þ
Consequently, the First-, second- and third-order cumu-

lants are governed as follows:

Cx
1 ¼ mx

1 ð14Þ

Cx
2 T1ð Þ ¼ mx

2 T1ð Þ � mx
1

� �2 ð15Þ

Cx
3 T1;T2ð Þ¼mx

3 T1;T2ð Þ�mx
1 mx

2 T1ð Þþmx
2 T2ð Þþmx

2 T2�T1ð Þ� �þ2 mx
1

� �3
ð16Þ

In this work, the third-order cumulants were calculated

from each MER signal.

3.3. Classification

Various classifiers were tested to estimate the performance of

the proposed automated STN localization system. KNN, DT,

Boosting and SVM classifiers were used in this study. Exten-

sive search was done to find the optimal parameters configu-
ration for each classifier. The following paragraphs provide a

brief illustration of the above mentioned classifiers.

KNN classifier is used to separate data based on the mini-

mum distance, such as, a test sample belongs to a certain

class if a more number of this class samples are closer to it

compared to other classes samples. KNN relies on the value

of K parameter which determines the number of samples

used for voting. The lower the K value, the greater the perfor-

mance in the training set, therefore, K = 1 is the most overfit-

ting case in which every sample is assigned to the nearest

neighbor. Despite that higher K values could build more pre-

cise and complicated models, generality is not guaranteed.

DT classifier uses the input features to construct a tree-

structured model with branches and nodes so as to learn

decision rules based on the training data. The test sample

class is decided based on these rules. The tree consists of

three nodes, internal, root and leaf which reflect the extracted

features, the branches decision outcome and the class label

(STN or non-STN), respectively [51].

Boosting is an advanced combined classifier based on an

ensemble method which attempts to build a strong classifier

from a large set of weak classifiers. First create an optimized

model based on the training data, then fabricate a new model

which try to correct the errors induced by the previous model

via emphasizing the misclassified training samples. Models

are added until perfect training data error is obtained or

assigned maximum number of models is reached. Various

algorithms were utilized in this work including AdaBoostM1,

Bagging, GentleBoost, LogitBoost and RobustBoost. DT was

used as the weak learner in all algorithms [49].

SVM classifier is a simple yet powerful supervised learning

approach, insensitive to overtraining and has a good general-

ization property. It constructs linear or hyperplane separators

that maximize the margins (distinction) between the classes.

However, when the classes are not linearly separable, kernel

functions are employed to address the non-linear classifica-

tion difficulties in a feature space with higher dimensions

[5]. Linear, polynomial (Poly) and radial basis function (RBF)

kernels were utilized in this work.
3.4. Performance measures

Leave-one-patient-out cross-validation (Leave CV) was used

to gauge the performance of the proposed methods. Herein,

STN and non-STN MER segments are symbolized as positive

and negative class, in that order. True positive (TP) quantifies

the number of correctly identified STN segments and false

negative (FN) quantifies the number of incorrectly identified

STN segments as non-STN. True negative (TN) quantifies the

number of correctly identified non-STN segments and false

positive (FP) quantifies the number of incorrectly identified

non-STN segments as STN. Our MER data contain 5273 signals

(1s) where nearly 60% of them are STN (see Table 1). Due to

class imbalance in the collected MER data, classification error

only is considered as inappropriate performance evaluation

criteria. Accordingly, evaluation matrices include accuracy

(Acc), sensitivity (Sens), specificity (Spec), Youden’s J-

statistic (J) and area under the curve (AUC) are employed.

Acc, Sens, Spec and J are governed by:



Fig. 3 – HOS Bispectrum plot of the mean of 1000 randomly

selected MER signals from non-STN region.
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Acc ¼ TPþ TN
TPþ TNþ FPþ FN

ð17Þ

Sens ¼ TP
TPþ FN

ð18Þ

Spec ¼ TN
TNþ FP

ð19Þ

J ¼ Sensþ Spec� 1 ð20Þ
To compute AUC, receiver operating characteristic (ROC)

curve is attained by plotting Sens known as true positive rate

(TPR) against false positive rate (FPR) of classification for a cer-

tain database at various threshold settings. FPR is known as

the fall out or probability of false alarm and can be calculated

by:

FPR ¼ 1� Spec ð21Þ
Fig. 4 – HOS Cumulant plot of the mean of 1000 randomly

selected MER signals from STN region.
4. Results

The typical bispectrum magnitude plots of STN and non-STN

MER signals are displayed in Figs. 2 and 3. It is evident that the

bifrequency magnitude is distinctive for each class, besides,

most of the magnitude of the bispectrum is within �0.1 to

0.1. Also, the bispectrum plot declares that there is a random

distribution of the magnitudes at several frequencies. More-

over, the bifrequency spread in STN region for PD patients is

more complex compared to non-STN region. This may be

due to the fact that MER signals originate from STN are more

irregular and chaotic. The cumulant contour plots of STN and

non-STN MER signals are shown in Figs. 4 and 5. A total of 8

bispectrum and 241 cumulants features were extracted from

MER segments of one second. In addition, two existing feature

sets containing, 9 spike dependent/independent and 64 WPD

based features were extracted (see Section 3.2).

The mean classification performance measures of various

classifiers using the existing as well as the proposed features

are shown in Table 2. Fig. 6 shows J performance for classify-

ing MER signals using the three feature extraction techniques

and all the classifiers. The experimental results showed that

HOS gave higher results compared to other feature extraction

methods. Also, WPD performed better than SD and SI. Using

conventional SD and SI features, LogitBoost achieved the
Fig. 2 – HOS Bispectrum plot of the mean of 1000 randomly

selected MER signals from STN region.

Fig. 5 – HOS Cumulant plot of the mean of 1000 randomly

selected MER signals from non-STN region.
highest mean Acc of 88.81%, Sens of 90.83%, Spec of 86.67%,

AUC of 0.8875 and J of 0.7749, followed by AdaBoostM1 which

reached Acc of 88.78%, Sens of 90.85%, Spec of 86.51%, AUC of



Fig. 6 – The bar plot of performance comparison of each

classifier using the three feature extraction techniques in

terms of Youden’s J-statistic.
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0.8868 and J of 0.7737. Similarly, using WPD features as input

feature vectors, GentleBoost achieved the highest mean Acc

of 93.54%, Sens of 95.03%, Spec of 92.57%, AUC of 0.9380 and

J of 0.8760, followed by AdaBoostM1 which reached mean

Acc of 93.18%, Sens of 94.39%, Spec of 92.68%, AUC of 0.9354

and J of 0.8707. However, when using HOS features as input

feature vectors, SVM with second order Poly kernel (SVM

Poly2) achieved the highest mean Acc of 94.81%, Sens of

96.73%, Spec of 92.15%, AUC of 0.9444 and J of 0.8888, followed

by LogitBoost which reached mean Acc of 94.45%, Sens of

96.07%, Spec of 92.76%, AUC of 0.9441 and J of 0.8883. It is

apparent that SVM Poly2 achieved mean J of 0.7655 and

0.8888 with SD&SI and HOS features, respectively, due to the

fact that MER signals are non-linear in nature. Nevertheless,

usingWPD features, it is noticed that among the different ker-

nels, linear kernel attained the highest performance, such as

SVM Linear achieved mean J of 0.8382, which is consistent

with the results reported by Karthick et al. [28]. Boosting

yielded higher performance than the basic DTusing the three

feature extraction techniques.

Performance measures including Sens and Spec, which

signify that the model can actually distinguish STN versus

non-STN classes, are especially relevant. Accordingly, Fig. 7

displays the plot of different measures of the implemented
Table 2 – The mean of classification measures of higher-order s
dependent/independent and wavelet packet decomposition fea
patient-out strategy. The mean characterizes average value of 2

Features Classifier Sens (%) S

SD&SI KNN 86.14
DT 88.93

AdaBoostM1 90.85
Bagging 90.65

GentleBoost 90.59
LogitBoost 90.83
RobustBoost 90.64
SVM Linear 85.31
SVM Poly2 89.76
SVM RBF 88.79

WPD KNN 88.68
DT 90.22

AdaBoostM1 94.39
Bagging 95.56

GentleBoost 95.03
LogitBoost 91.42
RobustBoost 93.73
SVM Linear 94.51
SVM Poly2 88.22
SVM RBF 89.56

HOS KNN 94.29
DT 95.70

AdaBoostM1 95.95
Bagging 96.81

GentleBoost 95.70
LogitBoost 96.07
RobustBoost 95.63
SVM Linear 96.23
SVM Poly2 96.73
SVM RBF 94.60
classifiers using HOS features based on Leave CV. Bagging

classifier attained the highest performance in separating

MER signals stem from STN region, with Sens of 96.81%. On
tatistics and spectra features in comparison to spike
tures. The validation is implemented using leave-one-
1 patients.

pec (%) Acc (%) AUC J

80.22 83.39 0.8318 0.6635
79.87 85.08 0.8440 0.6880
86.51 88.78 0.8868 0.7737
81.30 86.49 0.8598 0.7195
86.38 88.59 0.8848 0.7697
86.67 88.81 0.8875 0.7749
85.07 87.96 0.8786 0.7572
66.34 76.62 0.7582 0.5165
86.79 88.20 0.8828 0.7655
87.10 87.82 0.8794 0.7589

90.38 89.13 0.8953 0.7905
89.44 89.10 0.8983 0.7966
92.68 93.18 0.9354 0.8707
89.62 92.69 0.9259 0.8518
92.57 93.54 0.9380 0.8760
94.65 92.07 0.9303 0.8607
93.10 92.91 0.9341 0.8683
89.31 92.39 0.9191 0.8382
85.73 87.19 0.8698 0.7395
81.59 86.56 0.8558 0.7115

92.41 93.28 0.9335 0.8670
91.33 93.71 0.9352 0.8703
92.64 94.36 0.9430 0.8860
90.71 94.23 0.9376 0.8752
93.02 94.32 0.9436 0.8872
92.76 94.45 0.9441 0.8883
93.14 94.37 0.9438 0.8877
92.39 94.42 0.9431 0.8862
92.15 94.81 0.9444 0.8888
93.10 93.78 0.9385 0.8770
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the other hand, RobustBoost classifier yielded the highest per-

formance in separating MER signals stem from non-STN

region, with Spec of 93.14%. It is clear that, HOS bispectrum

and cumulants are effective for all the classifiers. HOS fea-

tures extraction and classification of one second MER signal

take mean processing time of 1.14 and 0.0083 s, in that order.

This work was executed using a PC with Intel Core i7

(2.20 GHz) processor and 8-GB RAM. The entire system was

conducted using MATLAB R2019a environment.

5. Discussion

In spite of advancement in imaging modalities [22], the vast

majority of DBS centers still use MER to validate the planned

trajectories [23,24,18]. Meanwhile, MER signals analysis has

been increasingly proved to provide vital neuronal biomark-

ers to discriminate between the different structures in the

BG region [19,28]. Though, until now, it is still uncertain which

features can bemore crucial to expose significant information

regarding STN region. Overall, several linear and frequency-

domain techniques have been exploited to analyze MER sig-

nals and define new signatures of STN region in PD patients,

however such techniques are not effective to recognize the

delicate changes in MER signals owing to their chaotic, non-

linear and complex nature [19]. Besides, STN region is associ-

ated with more irregular MER signals [41]. Despite that, the

hidden key signatures of stochastic non-stationary signals

could be unearthed by using non-linear algorithms, since

they have the ability to capture momentary changes associ-

ated with different properties, for instance, reliability, similar-

ity, sensitivity and predictability of the signal [43,45]. This

would help to explore the non-linear components existing

in the MER signals. Therefore, in this study, the presented

approach is tailored towards the automated detection of

STN borders using non-linear HOS based features extracted

from MER signals. To accentuate, the novelty of this work is

the formulation of unique HOS plots for STN and non-STN

regions.

Table 3 lists summary of the previous works carried out in

order to detect STN region in PD patients based on MER sig-
Fig. 7 – The average of performance measures of each

classifier using HOS features across 21 patients cross-

validation set.
nals. A similar stable dataset is usually a critical demand for

subsequent successful analysis of features and classification

[25]. Though, MER signals homogeneity is affected by differ-

ent recording machine parameters, variable electrodes impe-

dance and discrepancy of inter-patient neurophysiology,

which would induce possible unstable features (i.e. High vari-

ation in amplitude of all cases) and large classification errors

[31,42]. Accordingly, authors in [25,33,36,38] employed a

specially-designed feature standardization and normalization

to remove outliers and assign the feature vectors to a certain

range of values. Nevertheless, the caveat is that calculation of

features in this regard requires the MER data to be collected

first prior to implementation. As a result, normalization

based approaches are feasible for postoperative assessment,

but they are not practical for real time applications and can-

not aid the neurosurgeon intraoperatively [39]. Furthermore,

normalization of MER signals may lead to loss of pivotal infor-

mation, for instance, high-frequency portions and back-

ground neural activity properties which would introduce

some uncertainty to the system accuracy [42].

It is important to mention that 10-fold cross-validation

(10-fold CV) was used to estimate the classification perfor-

mance in the previous works [31,35,36,39,46]. In this tech-

nique, the data are regularly divided into 10 subsets of

equal size. After that, classifier is trained and tested for 10

rounds (folds), where in each round one subset is used for

testing while the other nine subsets are used for training,

then the average testing error over the 10 rounds is the final

classification error. However, 10-fold CV is not enough to

gauge the performance as training and testing data through

various folds may include signals from the same trajectory

or from the same position in case of segmentation. This will

very likely increase the bias in favor of training and testing

sets and thereby artificially improve the classification perfor-

mance [25,38]. To mitigate such encumbrance, Leave CV was

used to gauge the performance of the adopted classifiers.

It can be observed that several studies have applied differ-

ent normalization and/or feature selection techniques

[25,33,36,38,37,52]. However, this work flow suffers from sev-

eral disadvantages as it cannot be implemented intraopera-

tively and may open the door for design errors. In addition,

these models often suffer from biasing and furnish lower per-

formance when validated on bigger datasets. Meantime,

researchers exploited HOS methods in various applications

[43–45]. Nevertheless, automatic STN detection in MER signals

using HOS received less attention. Herein, a non-linear archi-

tecture to classify the MER signals into STN and non-STN

classes is developed. To the best of authors knowledge, this

is the first attempt at detecting the dorsal and ventral borders

of STN using HOS. Additionally, unlike the previous studies,

no normalization or feature selection techniques are necessi-

tated, such as all the extracted features demonstrate crucial

characteristics of the STN region. Consequently, the proposed

HOS model is minimalist: that the automated decision sup-

port is only based on the extracted features without any infor-

mation reduction by feature selection.

Also, it can be noticed that most of the studies

[25,30,31,33,35–38] used SD features to localize the STN

region. However, these features are subject to computational

complications and errors, particularly when calculated in real



Table 3 – Summary of studies conducted on automated detection of STN.

Authors Patients
No.

Feature extraction Classifier Performance(%)

Wong et al. [33] 27 7 SD + 6 SI; Feature Norm. Fuzzy clustering + Activity map Sens = 90 (STN entry); Sens = 95 (STN exit)
Cagnan et al. [30] 48 Firing rate + Background neural activity

+ PSD
Unsupervised algorithm Acc = 88 (42–258 Traj. Training–Testing)

Chaovalitwongse et al. [25] 17 7 SD + 6 SI; Feature Norm. Bayesian + DT + KNN Acc = 89.6 (Leave CV)
Guillen et al. [46] 4 6 SI SVM Acc = 99.4 (10-fold CV)
Vargas Cardona et al. [42] 4 Inter spike interval + Adaptive wavelets

+ Wavelet Transform
Bayesian + KNN Sens = 85

Ciecierski et al. [31] NR SD attributes + Background neural features RSES + RF Acc = 97.6 (10-fold CV)
Rajpurohit et al. [36] 26 7 SD + 6 SI; Feature selection: Forward,

Backward; Patient-specific Norm.
LR + KNN + SVM + Gaussian Nave Bayes Acc = 84 (10-fold CV)

Schiaffio et al. [35] 8 Data Norm.; 8 SD + 7 SI KNN + Fuzzy KNN Sens = 72 Spec = 82 (Leave CV)
Schiaffio et al. [37] 15 8 SD + 8 SI; Feature selection: Branch and

Bound, RelifF, LASSO, ELASTIC Net
KNN Acc = 86.13 (10-fold CV)

Valsky et al. [29] 81 Normalized root mean square + PSD SVM + HMM Acc = 94 (58–73 Traj. Training–Testing)
Vargas Cardona et al. [27] Set(A):6;

Set(B):4
Adaptive wavelets + WT + ISI Multi-task Gaussian process regression

with CMOC, LMC and IMC covarainces
+ KNN + SVM + LDC + QDC + Gaussian

Dataset(A): Acc = 85.99 (Leave CV) Dataset
(B): Acc = 84.1 (Leave CV)

Bellino et al. [38] 14 10 SD + 8 SI; Patient-specific Norm. +
Hemisphere-specific Norm.;
Feature selection: ReliefF, Backward,
Forward,,Branch and Bound

Naive Bayes + KNN + DT Acc = 94.35 (Leave CV)

Karthick et al. [41] 26 Discrete wavelet decomposition RF Acc = 83 (Leave CV)
Khosravi et al. [40] 50 FFT K-means clustering + SOM Acc = 80
Karthick et al. [28] 26 WPD RF + SVM + KNN Acc = 94 (Leave CV)
This work 21 SD&SI + WPD + HOS KNN + DT + Boosting + SVM Acc = 94.81 (Leave CV)

No. = Number, Traj. = Trajectories, Norm. = Normalization, SD = Spike Dependent, SI = Spike Independent, NR = Not Reported.
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time [29]. In addition, precise spike detection hinges on longer

recording duration, high signal to noise ratio as well as

stationary electrodes. As a result, the complexity and time

of the surgery would increase [19]. Also, Cao et al. [52]

reported that the features extracted from the background unit

activity are representative and able to detect the dorsal and

ventral borders of the STN. Moreover, Ciecierski et al. [31] con-

cluded that utilizing a combination of SD and SI features

yields a significant improvement rather than using SD fea-

tures alone, because each single feature group can just reflect

one-side characteristics of the electrophysiological activity.

Though, employing all the SD and SI features could cause

information imbalance, as the contribution of each feature

is uncertain [52]. Consequently, following feature selection

[36,40], the nine SD and SI features, reported in [36,40,46] as

informative and able to expose the biomarkers of STN region,

were extracted in this study. Also, authors in [28] reported

that WPD exhibits additional information of low and high fre-

quency components attributable to the fact that WT tree is

subset of WPD tree, as discussed earlier. They demonstrated

that fixed frequency bandwidth features would ameliorate

the performance and maintain more accurate representation

and higher resolution. Therefore, WPD features based on the

study by Karthick et al. [28] were extracted here. The two

aforementioned feature groups were employed to validate

the performance of the designed bispectrum and cumulants

features.

The HOS of MER signals reveals essential information of

higher order relationships and deviation from Gaussianity.

Two HOS methods (bispectrum and cumulants) have shown

great stability in the analysis of non-stationary signals [45].

Moreover, HOS features are robust enough to investigate

noisy signals, thus, the HOSmethods are suitable for MER sig-

nal study. The proposed HOS features are found to be the

most representative feature group to identify the neurophys-

iological borders of STN. Such as, SD and SI features accom-

plished mean AUC between 0.7582 and 0.8875, while WPD

features yielded mean AUC between 0.8558 and 0.9380. Mean

AUC between 0.9335 and 0.9444 were achieved by HOS fea-

tures (see Table 2). Despite having limited number of PD

patients in our dataset, SVM Poly2 achieved promising perfor-

mance with Acc of 94.81%, AUC of 0.9444 and J of 0.8888 using

bispectrum and cumulants features which is encouraging for

automated STN detection.

The motivation behind using short segments (1s) of MER

signals was to reduce the listening time, so as the neurolo-

gist is not required to spend a long time listening to the

MER at each position for the detection of STN region. Also,

the choice of such short signals is enough to extract mean-

ingfully discriminating features and provide a good balance

between concision and capacity to achieve precise predic-

tions [35,27,46]. MATLAB software was used to implement

the proposed method, which can be installed in hospitals

to help the process of STN localization. The limitation of

this work is that the proposed method needs to be evalu-

ated with a larger dataset, such as MER signals from only

21 PD patients were used in this study. In order to fabricate

a reliable automated system for the identification of STN

borders, huge database from several DBS centers is

required.
6. Conclusion

Recently, revealing of STN signatures has received the atten-

tion of many researchers. Therefore, this study proposed a

supervised classification model for detection of the neuro-

physiological borders of STN based on HOS features extracted

from MER signals. The presented results demonstrate that

SVM Poly2 classifier is able to characterize STN and non-

STN regions in 21 PD patients with an average Acc, Sens, Spec,

AUC and J of 94.81%, 96.73%, 92.15%, 0.9444 and 0.8888. In

addition, we experimentally showed that HOS achieved

higher performance than the commonly used methods (i.e

SD, SI and WPD) due to the ability to expose the underlying

hidden non-linear features and extract details regarding

phase relations from MER signals without any information

reduction. Consequently, the proposed method is robust and

can accurately identify one second MER recordings stem from

STN region. Hence, the developed MER based automated sys-

tem could greatly be regarded from a clinical perspective as

an efficient tool for STN detection in PD patients.

For future work, the proposed methodology can be further

extended for localization of other subcortical targets in the BG

area, for instance, GPi. Finally, the enhancement of the pro-

posed method requires further investigation on higher num-

ber of patients.
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[37] Schiaffino L, Muñoz AR, Villora JF, Bataller M, Gutiérrez A,
Torres IM. Feature selection for knn classifier to improve
accurate detection of subthalamic nucleus during deep brain
stimulation surgery in parkinson’s patients. In: VII Latin
American Congress on Biomedical Engineering CLAIB,
Bucaramanga, Santander, Colombia; vol. 60 of IFMBE
Proceedings. Springer; 2017. pp. 441–4. .

[38] Bellino G, Schiaffino L, Battisti M, Guerrero J, Rosado-Muñoz
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