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Abstract— Most types of networks depend on fixed resources 

in their configuration, but these fixed resources are not 

effective, especially in the case of a problem in any of these 

resources.  This may lead to a defect in the entire network until 

the problem is resolved and therefore there must be an 

alternative to replace the fixed resources in such cases. In this 

paper, the concept of addressing optimal operations of flexible 

reconfigurable networks with movable and changeable  

resources is  thoroughly presented. The methodology is 

represented in a mathematical form by solving  the 

optimization problems of quadratic programming, nonlinear 

programming and multi-objective programming. 

Implementation of the proposed technique is carried out to 

several illustrative examples with a single or multiple movable 

symbolic-based resources. The  implemented examples 

demonstrate the efficacy of the proposed technique and its 

strong capability in presenting many scenarios for system 

operation under movable resources. Finally, the applications of 

the new concept could be extended  to real life systems of the 

electricity, water, oil and gas, communication, computer, 

transportation, and service networks. 
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I. INTRODUCTION  

    The operation of real life physical systems undergoes 

continuous changes specially in their resources. Such 

resources are not all fixed in location or amount but they are 

better to have some of their components that are movable 

and changeable. The movable resource are defined as non-

fixed type of resources which are not associated with a 

specific location , but they are flexible enough to move as a 

one entity or some of its position from one part of the 

system easily based on the requirement of the whole system 

as shown in Fig. 1. In general, the overall operations of such 

systems are very challenging as they require new types of 

mathematical formulation, analysis and solution.  
 

       The concept of “reconfigurable system”   (which  literally 

means the  feature that  the elements or settings of such 

system could be rearranged) is commonly introduced in  

computer networks to indicate their capability of  

reconfiguration  upon requirement. One of the famous 

systems with such reconfigurability is the Field 

Programmable Gate Arrays (FPGAs), where the computer 

architecture is designed combining the flexibility of 

software operation with the adaptive high performance 

hardware [1]. The same concept has also extended by 

introducing the  reconfigurable manufacturing systems that 

can produce different flexible process layouts depending on 

the changing  requirements say of product volumes and mix 

types.  
 

       Other application of reconfigurable systems is in the area 

of flexible building design or responsive component 

architecture [2].  This flexible architecture permit the 

building components to  be reconfigured based on 

changeable aspects of its affecting  environment.  In general, 

the concept provides powerful and flexible tools in system 

operation running in changing environment.    
 
 

    The notion of Flexible Reconfigurable Networks is a new 

approach that can be applied to sensor networks, water 

pumping networks, and power networks. In this case, we are 

optimizing the system and obtaining a general policy for 

operation.   In such situation, we will be dealing with a 

typical parameter varying system represented by symbolic-

based appropriate approaches [3-7]. 
 
 

     There is no technique now available in the literature that 

can be tailored to handle this problem of the parameters 

varying nature. There are in fact limited work in the area of 

modeling real life systems with movable or changeable 

resources. There works were represented in the areas of 

telecommunication [8], sensor and actuator network[9, 10]. 
 

   The main objective of this paper is to develop a 

mathematical-based methodology for policy development, 

rather than seeking a specific numerical solution of limited 

usage. The policy has to be derived upon maximizing certain 

overall gain generated from network, minimizing cost or 

provided shortages, ..etc.  

 

II. REPRESENTATION OF FLEXIBLE 

RECONFIGURABLE NETWORKS 
 

    The representation of the flexible reconfigurable networks 

could be simply expressed by the small case study of 4-node 

network as shown in Fig. 1.    In this figure,  we have three 

fixed locations namely X, Y, and Z, with corresponding 

resources of x, y, and z respectively. In addition, we have 

one movable location denoted by M, with corresponding 

movable resources of m. 
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        In general the term “Reconfigurable” means to 

rearrange the elements or settings (after it was configured 

already) (this is the proposed approach that gives flexible 

systems that can be configured at any time based on the 

situations). 
 

   The various scenarios of this flexible network are shown 

in Table 1. The table provides the four different scenarios 

depicted in the Fig. 2. 
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 Fig. 1   A  geographically distributed Flexible  Reconfigurable 

Network with fixed and movable/changeable resources. 
  

   The same representation can also be extended to networks 

having multiple movable and changeable resources 

𝑚1 , 𝑚2 ,..,etc. These movable components are treated in the 

mathematical formulation in a separate way to enable the 

flexibility of their movement within the overall network. 
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Fig. 2 Various scenario of 4-node Flexible Reconfigurable 

Network by manipulating a single  movable component. 
 

     

TABLE 1 Various scenarios of the 4-node Flexible Reconfiurable 

Network described in Fig. 2. 
 

Scenario  

name 

Available overall potential resources 

Fixed locations Movable 

location 

X Y Z M 

S1 x y z m 

S2 x + m y z 0 

S3 x y + m z 0 

S4 x y z + m 0 
 

 

III. CLASSIFICATIONS  OF FLEXIBLE 

RECONFIGURABLE NETWORKS 
 

   The various classifications of flexible reconfigurable 

networks with movable/changeable components are very 

wide and can include the majority of real life operational 

network specially of the geographical distributed types. 

Nevertheless, the classification will be limited only to the 

combination of the network nodes location as fixed location 

and movable locations. Then for each location, we have 

three different components of resources fixed or changeable. 

This gives the various alternatives described in TABLE 2.  
 

 

   In general, the complexity of these problems will be 

related in the first place on the number of the parameter 

varying component in the system where the symbolic 

representation and solution approaches are applied. Other 

fixed components are in fact of the numeric type that can be 

handled by the conventional computational techniques. 

Moreover, for the simplicity of the work only Classes II to 

VI are considered which combinations of fixed and movable 

resources are. Classes VII and VIII will be postponed and 

could  be regarded only within the future research work. 
 
 

TABLE 2 Various classifications of Flexible Reconfigurable 

Networks. 
 

Class 

number 

Fixed location resources 

types 

Movable location 

resources Types 

Fixed  

resources 

Changeable 

resources 

Fixed  

resources 

Changeable 

resources 

I √    

II √ √   

III √  √  

IV √ √ √  

V √  √ √ 

VI* √ √ √ √ 

VII   √ √ 

VIII    √ 

   *  A typical example of this class is shown in Fig.  2. 
 

    

   During the implementation, the movable resources are 

kept in symbolic form in the investigation. Such symbolic-

based representation usually lead to a generic exact solution 

to the problem where a general policy could be attained and 

applied in a flexible  manner by manipulating the available 

flexible movable/changeable components. In most 

situations, the formulation of these networks towards 

seeking optimal operation solution will be based on matrix 

representation and manipulation. Such matrix-based 

formulation could be handled by appropriate symbolic 

computation software tools.  
 



   In the following sections, the notion of optimal operation 

of flexible reconfigurable networks is implemented through 

solving three applications handled by quadratic, nonlinear 

and multi-objective optimization.  
 
 

IV.  IMPLEMENTATION USING QUADRATIC 

PRGRAMMING 
 

 

A. Mathematical Formulation  
 

   The general form of Quadratic Programming optimization 

problem with movable resources 𝑚𝑖  can be represented as 

follows [11, 12]: 

Minimize   cx +
1

2
xTQx  

Subject to     Ax =

b {
Aix + mi ≤ bi             where  i = 1,2, … , r               
 Ajx − mj ≥ bj              where  j = 1,2, … , n               

 

(1) 

Let us define: 

x = (𝑥1 𝑥2 ⋯ 𝑥𝑛)𝑇 (2) 
 

𝑐 =  (𝑐1 𝑐2 ⋯ 𝑐𝑛) (3) 
 

𝑄 = (

𝑞11 𝑞12 … 𝑞1𝑛
𝑞21 𝑞22 … 𝑞2𝑛
⋮ ⋮ ⋱ ⋮
𝑞𝑛1 𝑞𝑛2 … 𝑞𝑛𝑛

)  

 

(4) 

where  Q is an (n x n) symmetric matrix. Also, we let:  
 
 

𝐴 = (

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

)   (5) 

and 

𝑏 =

(

 
 

𝑏1 −𝑚𝑖
𝑏2 +𝑚𝑗
⋮

𝑏𝑚 −𝑚𝑖
𝑏𝑚+1 +𝑚𝑗)

 
 
. (6) 

 

   Applying Lagrange’s theorem to the above formulation, 

the optimal solution 𝑥∗  can be expressed as [9]: 
 

𝑥∗=𝑄−1𝑐𝑇 + 𝑄−1𝐴𝑇(𝐴𝑄−1𝐴𝑇)−1(𝑏 − 𝐴𝑄−1𝑐𝑇). (7) 

   Equation (7) can be solved using Symbolic-based Matlab 

Software “MuPad” keeping the movable parameters as 

symbols at all steps of solution [13]. 

    It is pointed out that for the constrained  quadratic 

programming problems and its similar approaches the values 

at the RHS of their formulations are related directly or 

indirectly to the problem resources, which is the terms to be 

manipulated by the movable/changeable components of the 

suggested approach. 
 

B. Illustrative  Example 

   We will demonstrate now the concept of introducing the 

movable resources facilities with the original fixed 

unchangeable facilities by solving the following typical 

quadratic programming  Illustrative Example #1.  
 

Original Problem #1: 

 

   The original problem without movable resources can be 

expressed as: 

 

Minimize    𝑓(𝑥) = 𝑥1
2 + 𝑥2

2 

subject to  𝑔1(𝑥) = 6𝑥1 + 𝑥2 = 6                                                                                                         

                   𝑔2(𝑥) = 𝑥1 + 5𝑥2 = 1 

                 𝑔3(𝑥) = 2𝑥1 + 4𝑥2 = 8                                                                                                         

                   𝑔4(𝑥) = −3𝑥1 + −3𝑥2 = 1. 
 

(8) 

    The original feasible operation  zone of (8) obtained by 

plotting 𝑥2 𝑣𝑒𝑟𝑠𝑢𝑠 𝑥1 togerther with the  objective function 

are shown in Fig. 3.  
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Fig. 3 Plot of 𝑥2 𝑣𝑒𝑟𝑠𝑢𝑠 𝑥1 for the original Illustrative Example 

#1 without movable components. 
 

Modified Problem #1: 
 

   The modified problem #1 after adding two movable 

resource  𝑚1 𝑎𝑛𝑑 𝑚2 , can be witten as: 

 
 

Minimize    𝑓(𝑥) = 𝑥1
2 + 𝑥2

2 

subject to  𝑔1(𝑥) = 6𝑥1 + 𝑥2 = 6 −𝑚1                                                                                                         
                   𝑔2(𝑥) = 𝑥1 + 5𝑥2 = 1 +𝑚1 

                 𝑔3(𝑥) = 2𝑥1 + 4𝑥2 = 8 −𝑚2                                                                                                         

                   𝑔4(𝑥) = −3𝑥1 + −3𝑥2 = 1 +𝑚2. 

(9) 

 

   The modified feasible operation  zone of (9) obtained by 

plotting 𝑥2 𝑣𝑒𝑟𝑠𝑢𝑠 𝑥1 togerther with the  objective function 

are shown in Fig. 4(a) for changeable 𝑚1 and fixed 𝑚2  and 

Fig. 4(b) for fixed 𝑚1 and changeable 𝑚2 .  
 

   The optimal solution 𝑥∗of the problem can be expressed as 

follows: 
 

x*=𝑄−1𝑐𝑇 + 𝑄−1𝐴𝑇(𝐴𝑄−1𝐴𝑇)−1(𝑏 − 𝐴𝑄−1𝑐𝑇) (10) 
 

Or after substitution with the terms of  𝑐𝑇 = 0 ,we obtain: 
 

(
𝑥1
𝑥2
) = (

1 0
0 1

)
−1

(

6 1
1 5
2 4
−3 −3

) .𝑇 

 [(

6 1
1 5
2 4

−3 −3

) (
1 0
0 1

)
−1

.  (

6 1
1 5
2 4
−3 −3

)

𝑇

]

−1

.  

 

(

6 −𝑚1
1 +𝑚1
8 − 𝑚2
1 + 𝑚2

). 

 

 

(11) 
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a) Changing of  𝑚1 and  fixed 𝑚2  resources. 
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b) Fixed  𝑚1 and changing of  𝑚2 resources. 
 

Fig. 4 Plots of 𝑥2 𝑣𝑒𝑟𝑠𝑢𝑠 𝑥1  for the modified Illustrative 

Example #1 with movable components for two changing 

scenarios. 
 

 

   Equation (11) can be solved and the optimal solution of 

𝑥1 𝑎𝑛𝑑 𝑥2  can be determined as function of the symbolic 

movable resources  𝑚1  and 𝑚2  .Examples of the 

optimization results by separately varying 𝑚1  and 𝑚2 

resources is shown in TABLE 3 (a,b). 

 

     The overall effect of changing both 𝑚1 𝑎𝑛𝑑 𝑚2  on the 

objective function  𝑓(𝑥) is plotted in Fig. 5. In the 

investigation both 𝑚1 𝑎𝑛𝑑 𝑚2  are assumed to vary in 

increment of “1” in the range from 0 to 6 and  8 units 

respectively. 
 
 

TABLE 3  Effect of separate changes of 𝑚1 and 𝑚2 resources on 

the objective function 𝑓(𝑥) results. 
 
 

a) Changing of 𝑚1 and fixed 𝑚2  resources. 
 

𝑚1 0 1 2 3 4 5 6 

𝑥1 2.25 2.75 3.25 3.75 4.25 4.75 5.25 

𝑥2 1.13 1.50 1.875 2.25 2.62 3.00 3.37 

𝑓(𝑥) 6.33 9.81 14.07 19.13 24.95 31.56 38.95 
 

b) Fixed  𝑚1 and changing of  𝑚2 resources. 
 

𝑚2 0 1 2 3 4 6 8 

𝑥1 2.25 2.81 3.37 3.94 4.50 5.63 6.75 

𝑥2 1.13 1.000 0.87 0.75 0.63 0.37 0.13 

𝑓(𝑥) 6.33 8.91 12.15 16.06 20.64 31.78 45.57 

 
Fig. 5  Overall optimization results of 𝑓(𝑥) due to changes of 𝑚1 

and 𝑚2 for Illustrative Example #1. 

V.  IMPLEMENTATION USING NONLINEAR 

PROGRAMMING 
 

A. Mathematical Formulation  
 

   The general form of Nonlinear Programming Optimization 

problem with movable resources 𝑚𝑖  can be represented as 

follows: 
 

Minimize     𝑓(𝑥) 
subject to     𝑔1(𝑥) = 𝑏1+𝑚1 

                    𝑔2(𝑥) = 𝑏2 −𝑚1 

                             ⋮    
                𝑔𝑛−1(𝑥) =  𝑏𝑛−1+ 𝑚𝑛−1 

                    𝑔𝑛(𝑥) = 𝑏𝑛 − 𝑚𝑛 
 

(12) 

where  𝑓(𝑥) and 𝑔𝑖(𝑥) are nonlinear functions of x. 

 

   By applying Lagrange Function to the formulation of (12), 

we obtain: 
 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) − 𝜆1[𝑔1(𝑥)−(𝑏1+𝑚1)] − 𝜆2[𝑔2(𝑥) −
(𝑏2-−⋯− 𝜆𝑛−1[𝑔𝑛−1(𝑥)−(𝑏𝑛−1+𝑚𝑛−1)] −
 𝜆𝑛[𝑔𝑛(𝑥) − (𝑏𝑛-𝑚𝑛)] 

(13) 

 
𝑑 𝐿(𝑥,𝜆)

𝑑𝑥𝑛
 =0 (14) 

and 

𝑑𝐿(𝑥,𝜆)

𝑑𝜆𝑛
 =0. (15) 

   Equations (13) to (15) can be solved using Symbolic-

based Matlab MuPad Software through matrix manipulation 

keeping the movable parameters as symbols at all steps of 

solution. 
 

B. Illustrative  Example 

   We will demonstrate now the concept of introducing the 

movable resources facilities with the original fixed 

unchangeable facilities by solving the following nonlinear 

programming  Illustrative Example #2.  
 
 

Original Problem #2: 

 
 

   The original problem without movable resources can be 

expressed as: 
 



Minimize      𝑓(𝑥) = 𝑥1
3 + 𝑥2

2 + 𝑥3
2 

subject to     𝑔1(𝑥) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2=10 

                     𝑔2(𝑥) = 𝑥1
3 + 𝑥2

2 + 4𝑥3
2=20. 

 

(16) 

Modified Problem #2: 

 

   The modified problem #2 after adding single movable 

resource  𝑚1 can be written as: 
 

Minimize      𝑓(𝑥) = 𝑥1
3 + 𝑥2

2 + 𝑥3
2 

Subject to    𝑔1(𝑥) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2=10+𝑚1 

                    𝑔2(𝑥) = 𝑥1
3 + 𝑥2

2 + 4𝑥3
2=20-𝑚1. 

(17) 

 

    

    Following the Lagrange Function formulation described 

above in (13) to (15) and solving the matrix formulation 

using Matlab MuPad software, we arrive to the symbolic 

optimal solution with movable resources as follows: 
 
 

𝑥1 =
2

3
 

 

𝑥2 = √
500

81
+
5

3
𝑚1 

and 

𝑥3 = √
274

81
−
2

3
𝑚1 . 

 

(18) 

      Based on the optimal solution results, the changes of 

optimum solution versus changes in the movable resource 

𝑚1 in the range 0 ≤ 𝑚1 ≤ 5,  are shown in TABLE 4 and 

plotted in Fig. 6. 

 
 

TABLE 4 Optimization results of the Illustrative Example #2 

versus the changeable resource 𝑚1 
 

𝑚1 0 1 2 3 4 5 

𝑥1 0.667 0.667 0.667 0.667 0.667 0.667 

𝑥2 2.484 2.799 3.083 3.342 3.583 3.809 

𝑥3 1.839 1.648 1.431 1.1759 0.846 0.222 

𝑓(𝑥) 23.382 21.715 20.049 18.383 16.716 15.049 

 
 

Fig. 6  Optimization results of the Illustrative Example #2 versus 

the changeable resource 𝑚1. 
 

VI.  IMPLEMENTATION USING MULTI-OBJECTIVE  

PRGRAMMING 
 

A. Mathematical Formulation  
 

   The general form of Multi-objective Programming 

optimization problem with movable resources 𝑚𝑖  can be 

represented given hereafter. 

Consider the following problem with the separate multi-

objectives 𝑧𝑖’s [12, 13]: 
 

𝑧1 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 (𝑥) 
𝑧2 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 (𝑥) 
            ⋮ 
𝑧𝑛 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑛 (𝑥) 

(19) 

     

such that 𝑓𝑖 (𝑥) are nonlinear or quadratic functions of x.  
 

   Using the weighted multi-objective optimization methods, 

the overall multi-objective function can be expressed as: 
 

Minimize Z= 𝑤1. 𝑧1 + 𝑤2. 𝑧2 +…+ 𝑤𝑛 . 𝑧𝑛 (20) 

such as the weightings 𝑤𝑖   are non-negative and 

𝑤1+ 𝑤𝑛 +…+ 𝑤𝑛 = 1. (21) 
 

   Accordingly, the general form of Multi-objective 

Nonlinear Programming optimization problem with movable 

resources 𝑚𝑖 can be expressed now as follows:    
 

Minimize     Z= 𝑤1. 𝑓1 (𝑥) + 𝑤2. 𝑓2 (𝑥) +…+ 𝑤𝑛. 𝑓𝑛 

                                                                

subject to    𝑔1(𝑥) = 𝑏1+𝑚1 

                   𝑔2(𝑥) = 𝑏2 −𝑚1 

                             ⋮    
                 𝑔𝑛−1(𝑥) = 𝑏𝑛−1+ 𝑚𝑛−1 

                    𝑔𝑛(𝑥) = 𝑏𝑛 − 𝑚𝑛 
 

(22) 

 

  where  𝑔𝑖(𝑥) are nonlinear or linear functions of x. 
  

   The optimization problem of (22) can be similarly solved 

aso the Nonlinear Programming optimization problem 

described in (12) following the Lagrange Function approach 

of (13) to (15).  
 

 

    For multi-objective Quadratic Programming formulations, 

the solution will follow the typical solution given in  (7) as 

shown before. The same approach could also be extended 

for Goal Programming Optimization problems [ 11, 14 ]. 

B. Illustrative Example 

   We will demonstrate now the concept of introducing the 

movable resources facilities with the original fixed 

unchangeable facilities by solving the following multi-

objective quadratic programming  Illustrative Example #3.  
 

 

 

Original Problem #3: 
 

   The original problem without movable resources can be 

expressed as: 
 

𝑀𝑖𝑛𝑖𝑛𝑖𝑧𝑒  𝑓(𝑥) = 𝑤1(𝑥1 − 2𝑥2 + 4𝑥3 + 𝑥4 + 𝑥1
2

+ 2𝑥2
2 + 3𝑥3

2 + 𝑥4
2 + 𝑥1𝑥3)

+ 𝑤2(𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2) 
subject to          3𝑥1 + 4𝑥2 − 2𝑥3 + 𝑥4 = 10 

                       −3𝑥1 + 2𝑥2 + 𝑥3 + 2𝑥4 = 2 

                           2𝑥1 + 3𝑥2 − 4𝑥3 + 𝑥4 = 5 

                                    𝑥1 + 𝑥2 + 𝑥3 − 𝑥4 = 12. 
 

(23) 



Modified Problem #3: 
    

   The modified multi-objective programming problem of 

(23) can be re-written after adding the two movable 

resources 𝑚1 and 𝑚2 as follows: 
 

𝑀𝑖𝑛𝑖𝑛𝑖𝑧𝑒  𝑓(𝑥) = 𝑤1(𝑥1 − 2𝑥2 + 4𝑥3 + 𝑥4 + 𝑥1
2

+ 2𝑥2
2 + 3𝑥3

2 + 𝑥4
2 + 𝑥1𝑥3)

+ 𝑤2(𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2) 
subject to      3𝑥1 + 4𝑥2 − 2𝑥3 + 𝑥4 = 10 −𝑚1 

                 −3𝑥1 + 2𝑥2 + 𝑥3 + 2𝑥4 = 2 +𝑚1 

                    2𝑥1 + 3𝑥2 − 4𝑥3 + 𝑥4 = 5 +𝑚2 

                              𝑥1 + 𝑥2 + 𝑥3 − 𝑥4 = 12 − 𝑚2. 
 

(24) 

      

     Equation (24) is a typical Quadratic Programming 

problem that can be solved by (7), that is: 𝑥∗=𝑄−1𝑐𝑇 +
𝑄−1𝐴𝑇(𝐴𝑄−1𝐴𝑇)−1(𝑏 − 𝐴𝑄−1𝑐𝑇), such as: 
 

𝐴 = [

   3
−3
   2
   1

   

4
2
3
1

  

−2
   1
−4
   1

  

−1
   2
   1
−1

 ] 

 

(25) 

 

Q= 

(

𝑤1 + 𝑤2 0 𝑤1 0
0 2𝑤1 + 𝑤2 0 0
0 0 3𝑤1 +𝑤2 0
0 0 0 𝑤1 + 𝑤2

) 
(26) 

 

c = [w1 −2w1 4w1    w1 ] 
 

(27) 

and 

b = [

10 − m1
2 + m1
5 + m2
12 − m2

]. 

 

(28) 

 

   Using the Symbolic-based Matlab MuPad Software the 

above quadratic programming optimization problem can be 

solved through matrix manipulations. 

   The optimization results are obtained as functions of the 

movable resources 𝑚1 and 𝑚2  in symbolic form. Selected 

forms of solution are illustrated in TABLE 5 and plotted in 

Fig. 7 (a, b,c). 

 
TABLE 5 Selected optimization results of the Illustrative 

Example #3 for 𝑚1 = 2  and 𝑚2 = 5  versus changeable 

optimization function weighted parameters 𝑤1 and 𝑤2. 
 

𝑤1 0 0.2 0.4 0.6 0.8 1 

𝑤2 1 0.8 0.6 0.4 0.2 0 

𝑥1 -3.20 -3.4 -3.62 -3.82 -4.02 -4.22 

𝑥2 5.18 5.58 5.98 6.38 6.78 7.18 

𝑥3 -1.9 -2.7 -3.58 -4.38 -5.18 -5.98 

𝑥4 -7.02 -7.2 -7.42 -7.62 -7.82 -8.02 

𝑓(𝑥) 90.40 107.32 131.55 164.99 209.58 267.23 
 
 

 

VII.   REAL LIFE APPLICATIONS 
 
 

A. General Applications 

    At present, there are many operational networks in real 

life where some of the resources are changeable in either 

amount or location. These could be regarded as flexible 

resources that require different way of handling compared to 

fixed amount and location resources. Usually the movable 

and changeable resources are introduced after the 

construction of the basic fixed network. Nevertheless, it is 

intended in this research that such notion of movable and 

changeable resources be considered during the system 

design process and conceived as a powerful mechanism for 

adaptively encountering future changing operation 

environment of the system.     

 
 

 

 

 
𝑎)  𝑚1 = 2 and 𝑚2 = 5 

 

𝑏) 𝑚1 = 6 and 𝑚2 =  3. 

 

 
c) 𝑚1 = 10 and 𝑚2 = 7. 

 

 

 Fig. 7 Selected optimization results of the Illustrative Example #3 

versus changeable weighted parameters 𝑤1 and 𝑤2. 

 
   The proposed approach of the flexible reconfigurable 

networks operation  using  movable/changeable resources 

has wide application to real life operational systems of the 

stand-alone unit or as interconnected multi-units networks. 

Examples of the applications of these interconnected 

operational networks with movable/changeable resources 

are shown in Fig. 8, and listed as follows [15]: 



 

1) Irrigation and agriculture drainage networks 

2) Electric generation and distribution networks 

3) Potable water and wastewater networks 

4) Oil and gas pipelines networks 

5) Communication and computer networks. 

6) Traffic and transportation networks 

7) Security and fire protection networks 

8) Customer services including financial and health 

networks. 

 
  These applications have many aspects in common. The 

first aspect is that they are operational and subjected to 

parameters varying supply and demand. The second aspect 

is that they could be operated using the suggested Flexible 

Reconfigurable Networks with movable and changeable 

resources. The third aspect is that each network cannot 

operate separately but has to interact with other networks at 

different levels. All these networks could be provided with 

additional movable or changeable resources.  

Irrigation 

Networks

Communication 

Networks 

Water 

Networks

Oil and 

Gas 

Networks

Transportation 

Networks

Customer 

Services
Security 

Networks

Electric 

Networks

 

Fig. 8  A diagram showing real life interactions between different 

operational systems with movable and changeable resources. 
 

    Usually, the specifications of movable units are different 

than the fixed ones as they must be more robust and 

withstand environmental and mechanical movement 

problems. Nevertheless, the benefit gained from the 

flexibility of symbolic-based changing the networks from 

fixed unchanging ones to more powerful flexible 

reconfigurable ones could justify any additional costs 

included in their incorporation in the system configuration 

[16-18]. 
 

C. A Selected  Application Example 
 

     A typical Flexible Reconfigurable Network in real life 

application of an irrigation network with 15 pumping 

stations nodes (12fixed and 3 movable) at El-Nasr Area 

West of Delta (Egypt) is sketched in Fig. 9  [19].  
 

 

   The fixed nodes comprise different types of pumping 

stations of the large, medium and small capacity sizes. The 

three movable nodes are truck mounted pumping units 

added to enhance the overall optimal operation of the 

irrigation network. Such movable stations can be moved 

within the irrigation pumping network based on irrigation 

water supply versus demand requirements at each node in 

the network..  
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Fig.  9   A typical real life Flexible Reconfigurable Flexible 

application of an irrigation network  

      

    The optimal operation of this Flexible Reconfigurable 

Network application could be formulated as a conventional 

nonlinear multi-objective or goal programming problem. 

The objectives are based on optimizing overall energy 

consumption from both fixed and movable pumping nodes. 

while minimizing economic and environmental losses due to 

any water demand deficiencies of agriculture area supplied 

by these nodes. The RHS of system constrains are 

adaptively generated from time changing supply and 

demand data resources at various fixed and movable nodes. 

 
 

VIII. CONCLUSIONS 

 

   The notion of Flexible Reconfigurable Networks 

introduced in this paper is a new approach that can be used 

in many optimal applications in real life systems. In general, 

the term “reconfigurable” applied in this work  implied  to 

rearrange the elements (after it was configured already) (this 

is the proposed approach that gives flexible system that can 

be reconfigured at any time based on the situation).  
 

   The implementation and application examples indicate the 

efficacy of the proposed technique and its strong capability 

in presenting various decision to make many scenarios for 

system operation under movable or changeable resource. 
 

   For the proof of concept, several representable 

optimization examples are solved in the generic exact 

symbolic way, through MATLAB MuPAD software 

addressing symbolic representation and optimization 

solution. This leads at the end to a general policy could be 



attained and applied in a flexible  manner by manipulating 

the available flexible movable/changeable components. 
 

   The methodology was demonstrated with three applications 
of Quadratic Programming, Nonlinear Programming, and 
Multi-objective Programming optimization formulations. The 
application to such problems  are practical to be solved by 
Matlab MuPad as their solutions steps are carried out through 
matrix manipulation and simple algebraic calculations which 
are easy to be implemented through symbolic computations.  

    The suggested methodology could have many 

applications in real life systems. Examples of these systems 

are: the energy generation networks, irrigation water 

pumping, drinking water networks, the gas networks, 

wastewater networks, traffic and transportation networks, 

measuring sensors networks, and service-based networks. 

Finally, the proposed approach could be extended in a 

similar symbolic-based fashion to other optimization 

techniques following the algebraic and matrix methods of 

solution. This will help in opening the door towards building 

a new generation of Reconfigurable Flexible Networks. 
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