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Abstract
This paper proposes utilizing a recent metaheuristic technique, artificial rabbits’ optimization (ARO), enhanced with the
quasi-opposition-based learning (QOBL) technique to improve global search capabilities. Furthermore, the novel line stability
index (NLSI) is used to show weak buses in radial distribution systems (RDSs), aiding in the optimal placement and sizing
of renewable energy sources (RES) such as photovoltaic (PV) systems. This enhanced algorithm, named the hybrid quasi-
oppositional ARO (Hybrid QOARO) algorithm, addresses both single-objective and multi-objective functions. The single-
objective approach focuses on reducing active power loss in the RDS, while the multi-objective function seeks to minimize
active power loss with total voltage deviation (VD) and maximize the voltage stability index (VSI). This multi-objective
approach helps determine the appropriate sizing of PV and battery energy storage systems (BESS) over 96 h (four seasons),
considering the variability of photovoltaic power generation. To evaluate the effectiveness of the proposed approach compared
to different optimization strategies, the IEEE 33-bus RDS is used. The highest reduction in energy losses and VD, at 92.48%
and 99.78%, respectively, is achieved by applying PV + BESS at optimal power factor (PF) compared to PV only, PV + BESS
at unity PF, and PV + BESS at 0.95 lagging PF.
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1 Introduction

1.1 Motivation

Voltage instability poses a significant challenge in con-
ventional power systems due to transmission line failures,
increased load demands, and congestion in radial dis-
tribution systems (RDSs). To enhance system reliability
during stressed conditions, various methods are employed,
including the use of distributed generators (DGs), FACTS
devices, and load shedding. DGs can be categorized into
non-renewable sources such as micro-turbines, small gas
turbines, and combustion turbines, as well as renewable
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sources like wind, solar, biomass, hydro, and geothermal
energy. Additionally, energy storage systems (ESSs) play
a crucial role, encompassing battery energy storage system
(BESS), flywheel energy storage (FES), energy capacitors
(EC), and superconducting magnetic energy storage (SMES)
systems [1].

To minimize CO2 emissions, the electrical systems indus-
try is swiftly integrating renewable energy sources (RES),
such as photovoltaic (PV) technology. The incorporation
of RESs into RDSs offers numerous benefits, including
improved power efficiency, reduced power loss, better volt-
age profiles, and enhanced system stability. However, inte-
grating RESs into existing electricity networks presents
challenges. PV technology is gaining popularity due to its
increased efficiency, lower cost, and favourable sun irra-
diation levels [2]. However, PV systems, being stochastic
energy sources, can lead to grid instability. BESS is utilized
to address this issue.
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1.2 Literature review

Most researchers have focused on developing methods for
deciding the appropriate sizes and locations for DGs in RDSs
using two distinct strategies over the past decade. The first
strategy relies on analytical optimization techniques (OTs),
while the second employs metaheuristic OTs. By utilizing
both single- and multi-objective OTs, the problem of DG
allocation has been effectively addressed.

Within this subject, metaheuristic algorithms and ana-
lytical techniques [3–5] are often used. As an illustration,
consider single-objective optimization problems (OPs) with
the goal of minimizing power losses (PL). Four different
types of DG are optimally sized using the honey bad-
ger algorithm (HBA) [6], solar-based DGs are optimally
located, sized, and numbered using Harris Hawk’s optimiza-
tion (HHO) [7], distribution network (DN) PL is reduced
using the whale optimization algorithm (WOA) [8], PL is
reduced using the Manta Ray foraging optimization algo-
rithm (MRFO) on three different systems (IEEE 33, 69,
and 85 test systems) [9], OPs in electrical power systems
are addressed using the improved wild horse optimization
algorithm (IWHO) [10], and a technique for positioning and
scaling solar PV-DGs inside RDS depending on the loca-
tion’s solar PV capacity factor is investigated using particle
swarm optimization (PSO) [11].

For multi-objective OPs such as minimizing active and
reactive PL, enhancing voltage profiles, and improving volt-
age stability. Methodologies such as multi-objective thermal
exchange optimization (MOTEO) and the multi-objective
Lichtenberg algorithm (MOLA) are used for the optimal
allocation of shunt capacitors (SCs) and different types of
DGs while considering multiple voltage-load models [12].
For the best possible distribution of distributed energy stor-
age units in DS, the artificial bee colony (ABC) method is
utilized [13]. The moth-flame optimization (MFO) method
is used to optimize the placement of solar and wind RES and
DN reconfiguration with an emphasis on dependability [14].
Furthermore, the artificial hummingbird algorithm (AHA) is
engineered to accomplish several goals, such as maximizing
voltage stabilitymargin (VSM), decreasing voltage variation,
lowering PL, and generating annual economic savings [15].

PSO is used to determine where DGs should be placed
in the DN to improve the voltage profile and compensate
for reactive and active PL [16]. To handle the multi-
objective OPs of integrating DG into DS, the multi-objective
bonobo optimizer (MOBO) is utilized [17]. System reliabil-
ity is increased by carefully placing and sizing ESSs inside
DN using the teaching-learning-based optimization (TLBO)
technique [18]. Finally, an enhanced technique known as the
“golden jackal optimization” (IGJO) is suggested to optimize

many CBs andmulti-type DGs in DNs that tackle both single
and multi-objective [19].

Two main approaches that researchers are using to either
develop new algorithms or improve current ones are hybrid
techniques and enhanced metaheuristic optimization algo-
rithms. Hybrid-enhanced grey wolf optimizer coupled with
PSO (EGWO-PSO)[20], hybrid analytical tree growth algo-
rithm (ATGA) [21], a combination of coupled power loss
sensitivity (CPLS) and improvedGWO[22], binaryPSOwith
shuffling frog leap algorithm (SFLA) [23], PSO-coral reef
optimization (PSO-CRO) [24], combining voltage stability
index (VSI) and loss sensitivity factor (LSF) with cuckoo
search algorithm (CSA) [25], genetic-moth swarm algorithm
(GMSA) [26], and combining cuckoo search (CS) with the
grasshopper optimization algorithm (GOA) [27] are some
examples of the algorithms that are included in the hybrid
approach.

Quasi-oppositional chaotic symbiotic organisms search
(QOCSOS) [28] is an example of how the optimization of
metaheuristic algorithms has been enhanced by the use of
methods such as chaos theory and quasi-oppositional-based
learning (QOBL).

However, previous studies have overlooked several impor-
tant aspects, including the availability of primary energy
resources and variations in load over time. These factorsmust
be taken into account when dealing with RES. As a result,
regardless of the level of RES penetration or the magnitude
of load demands, issues related to voltage levels and PL can
arise. The best placement and size of renewable DG units,
especially PV and WT, are decided upon using the AHA
framework [15]. Using unknown WT, PV, and plug-in elec-
tric vehicle (PEV) units, this method presents the gradient
bald eagle search (GBES) algorithm for solving the nonlin-
ear optimum power flow issue [29]. The size and placement
of RES and BESS in distribution systems are optimized in
[30] using a modified version of the bald eagle search opti-
mization algorithm (LBES). Furthermore, the equilibrium
optimization (EO) method was used in [31] to obtain the best
possible integration of PV systems with BESS. For merg-
ing PV and DSTATCOM units with optimum planning, the
multi-agent lion optimizer (MALO) is presented in [32]. To
determine the ideal location and size of PVs and BESS in a
DS, a multi-objective optimization strategy utilizing genetic
algorithms (GA) is used [33]. Lastly, the problem of effi-
ciently allocating generating technologies while considering
the unpredictable variations in solar irradiation and fluctuat-
ing power system demands is addressed in [34].

1.3 Contribution

To improve DG unit allocation in RDSs, the hybrid
quasi-oppositional artificial rabbits’ optimization (Hybrid
QOARO) metaheuristic is presented in this study. Hybrid
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QOARO improves ARO [35] performance by integrating
QOBL to improve algorithms and using the novel line
stability index (NLSI) to limit the search area. Its objective
function (OF) serves as a single-objective approach, aim-
ing to reduce PL in RDSs. Additionally, the multi-objective
HybridQOAROaims tominimize PL, total voltage deviation
(VD), and increaseVSI.Evaluation and comparisonusing the
IEEE33-nodeRDShighlight the effectiveness of thesemeth-
ods, addressing DG size and placement by comparing their
results with QOARO, the original ARO, and other published
OTs. This paper aims to address some of the limitations of
previous research by examining the impact of different power
factor (PF) values onDGoperationwithmultipleDGs. It also
studies the effect of integrating PV-only and PV + BESS sys-
tems at various power factors on energy losses (EL) reduction
alongside voltage stability improvement, all while consider-
ing the uncertainty of PV generation with BESS over four
seasons (96 h). The study’s contributions are summarized as:

• Modelling PV power uncertainty was developed to opti-
mize BESS scheduling throughout the four seasons (96 h).

• A comparison of modern algorithms such as the pelican
optimization algorithm (POA) [36], Kepler optimization
algorithm (KOA) [37], and ARO, revealing that ARO is
the most optimal, and it was utilized in this paper.

• Introduction of a novel method called Hybrid QOARO,
addressing the optimal location and sizing of DGs for
single and multi-OFs, and, comparing its results with
QOARO, the original ARO, and other publishedOTs using
the IEEE 33-node RDS.

• Integration of PV-only and PV + BESS units at unity PF,
0.95 lagging PF, and optimal PF into the RDS throughout
four seasons, resulting in reduced total EL and improved
voltage profile.

1.4 Paper organization

The remaining text follows this order: Problem formulation
in Sect. 2, Modelling of PV Power Generation in Sect. 3,
Modelling of BESS in Sects. 4, and Modelling of PV with
BESS sizing in Sect. 5. Section 6 discusses optimal loca-
tion and sizing techniques, while Sect. 7 focuses on the
Application of Hybrid QOARO algorithm in DG allocation.
Section 8 covers multi-objective Hybrid QOARO. Section 9
contains Results and Discussion, and the Conclusions and
Future Research are finally presented in Sect. 10.

2 Problem formulation

The primary challenge lies in determining the optimum posi-
tion and capacity of DGs in an RDS.

Fig. 1 One line diagram of RDS

2.1 Power flow analysis

In this paper, the backward/forward sweep algorithm [38]
has been used to compute power flow within the RDS.

Considering a simple RDS is apparent in Fig. 1, where the
buses i and j are the busses at the sending and receiving ends,
respectively, Vi , Vj are the voltage at sending and receiving
bus, respectively; PLi and QLi are the power of the active
and reactive loads at the bus i , respectively; PLj and QLj

are the power of the active and reactive loads at the bus j,
respectively. Ri j and Xi j are the resistance and reactance
between bus i , j .

To calculate the load flow solution, two matrices are used:
BIBC and BCBV [39]. The branch-current matrix (B) is
calculated from the load current matrix (I) using the bus-
injection to branch-current matrix (BIBC) method [9].

[B] � [BIBC][I ] (1)

Using the branch-current to bus-voltage matrix (BCBV),
Kirchhoff’s voltage law is used to determine the voltage drop
at each bus with respect to the reference bus:

[�V ] � [BCBV][B] (2)

2.2 Objective function (OF)

The optimum DG allocation problem is formulated as a
single-objective and multi-objective OPs in this research.

2.2.1 Single OF

The mathematical expression of single OF is described as
follows:

f1 � min(Ploss) (3)

where, f1 minimize the real PL (Ploss).
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